Morton

* granted extension

performed

3-24-04

VOC Emissions from Hemlock Lumber

Report to

Hampton Affiliates, Cowlitz Division P.O. Box 189 Randle, WA 98377

Report by

Michael R. Milota
Department of Wood Science and Engineering
Oregon State University
Corvallis, OR 97331

April 15, 2004

TABLE OF CONTENTS

1	Results Summary	Page
11	Lumber Source and Handling	1
Ш	Kiln Description and Operation	2
	Humidity Temperature Schedules Charge sequence	3
IV	Sampling Systems and Methodologies	7
٧	Data Reduction and Treatment	7
	Flow calculations	8
VI	Sampling Results	9
VII	Quality Assurance	. 16
	Leak checks	
VIII	Discussion and Recommendations	. 16
	APPENDICES	
Appe	endix 1. Detailed sampling procedures	. 17
Appe	endix 2. Data in electronic form	. 26
Appe	endix 3. Samples of field data sheets	. 27
Арре	endix 4. Calibration data	85
	OSU, Wood Science and Engineering i Hampton VOC Test. April. 2	004

LIST OF FIGURES

FIGURE 1. Schematic of kiln and sampling system
FIGURE 2. Dry- and wet-bulb temperatures during the cycle 4
FIGURE 3A. Schematic of heated filter box
FIGURE 3B. Photo of VOC sampling system
FIGURE 4. Hydrocarbon concentration and vent rate versus time
FIGURE 5. Cumulative emissions and rate of emissions versus time
FIGURE 6. Moisture content versus time for the charge
FIGURE 7. Cumulative emissions versus moisture content of the charge 14
LIST OF TABLES
TABLE 1. Summary of results
TABLE 2. Drying schedule
TABLE 3. Estimated VOC release at different final moisture contents
TARLE 4 Summary of sample runs

VOC Emissions from Sitka spruce Lumber

I. Results Summary

Two charges each containing 73.3 board feet of 2x4 hemlock lumber were dried in a small-scale kiln at Oregon State University. The kiln dry- and wet-bulb temperatures were provided by Hampton Lumber. One schedule was at a conventional temperature, with a maximum temperature of 180°F (82°C) and a wet-bulb temperature of 150°F (65°C). The other was at a high temperature, with a maximum temperature of 215°F (103°C) and a wet-bulb temperature between 150F (65°C) and 165°F (74°C). The air velocity was 750 feet per minute (3.8 m/s). The kiln was indirectly heated with steam. There was no humidification. Regulating the amount of air entering the kiln controlled venting and the humidity.

A JUM 3-200 total hydrocarbon analyzer was used to measure organic emissions following EPA Method 25A. It has been demonstrated through past studies (Lavery and Milota, 2000, Forest Products Journal, NCASI/Georgia-Pacific SEP project) that this method in this small-scale kiln gives results similar to a large-scale kiln. The data for the test is summarized in the Table 1.

TABLE 1. Summary of results.

Charge	Schedule	Initial MC	VOCa	Time⁵
		%	lb/mbf	hrs
1	Conv.	115.7	0.40	52.9
2	High	112.9	0.34	32.7

^a VOC value reported at 15% moisture content. This can be adjusted to a different final moisture contents using data in report.

II. Lumber Source and Handling

Three charges of lumber were delivered to Oregon State University on March 16, 2004, two to be dried and one as a backup. The wood was wrapped in plastic at the mill to prevent predying and loss of organic compounds.

The wood for two charges was was rewrapped in plastic and stored at 2°C until they could be dried. The first charge was put in the kiln immediately; however, there was a problem with the kiln control and it was aborted. The conventional charge described in this report was started on March 24 and the high-temperature charge on March 29.

b to 15% moisture content

III. Kiln Description and Operation

A schematic of the kiln is shown in Figure 1. The kiln box is approximately 4' by 4' by 4'. It is indirectly heated by steam. Four dry-bulb thermocouples and two wet-bulb thermocouples are located on the entering-air side of the load. The dry-bulb thermocouples are spaced in a grid. The two wet-bulb thermocouples are under a single sock at the center of the entering-air side of the load.

Humidity control

A 200 L/min MKS mass flow meter controlled and measured the amount of air entering the kiln. It was factory calibrated and checked using a bubble meter. The amount of air entering the kiln is based on the wet-bulb temperature - if it is above setpoint, the airflow is increased and if it is below setpoint the airflow is decreased. This is analogous to venting for a commercial kiln. A minimum of 4 L/min entered the kiln at all times, more than removed by the analyzer (< 2.6 L/min). Putting air into the kiln at a rate of 100 L/min causes the pressure in the kiln to be 60 to 130 Pa above ambient, depending on location in the kiln (high-pressure or low-pressure side). Thus, any fugitive leakage should be out of the kiln. Two additional flow meters can be manually set to provide additional airflow. The steam spray line is disabled, so no water vapor is added to the kiln atmosphere.

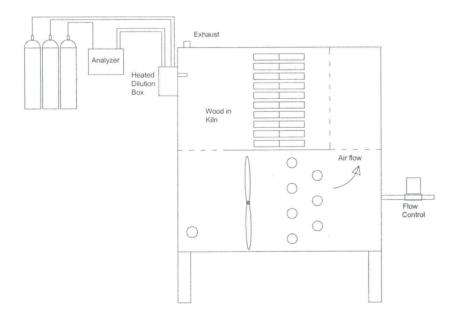


FIGURE 1. Schematic of kiln and sampling system.

Temperature

Temperature in the kiln is controlled by indirect steam heating. When the average of the four dry-bulb thermocouples is below setpoint, the steam pressure in the coil is increased. When it is above setpoint, steam flow to the coil is reduced.

Schedules

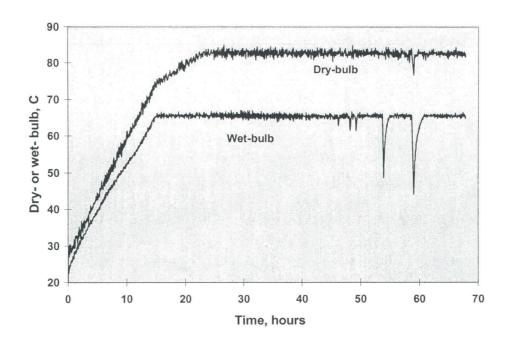

The drying schedule supplied by the mill is shown in Tables 2a and 2b. The values in Table 2b are base on the entering-air temperature. This represents the highest temperature the wood would experience in the kiln. The actual temperatures in the lab kiln are presented in Figure 2a and 2b.

TABLE 2a. Drying schedule for the conventional-temperature charge.

Step time, hours	Ramp time, hours	Run time, hours	Dry-bulb, °F	Wet-bulb, °F
0	0	0	80	70
12	12	12	165	150
4	16	16 to dry	180	150

TABLE 2b. Drying schedule for the high-temperature charge.

Step time, hours	Ramp time, hours	Run time, hours	Dry-bulb, °F	Wet-bulb, °F
0	0	0	155	120
12	12	12	200	175
4	4	16	210	170
8	0	24	215	160
16	0	40	215	150
10	0	50 to dry	215	140

FIGURE 2a. Dry- and wet-bulb temperatures during the conventional-temperature drying cycle.

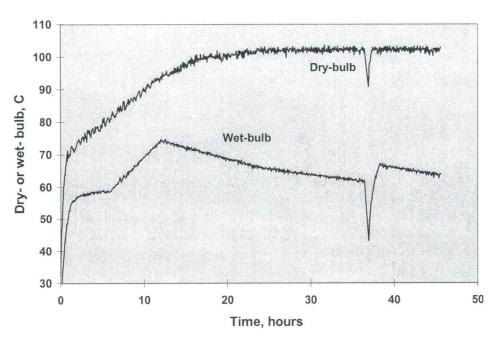


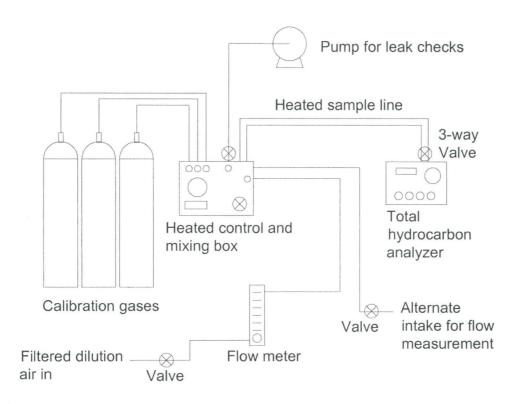
FIGURE 2b. Dry- and wet-bulb temperatures during the high-temperature drying cycle.

Charge Sequence

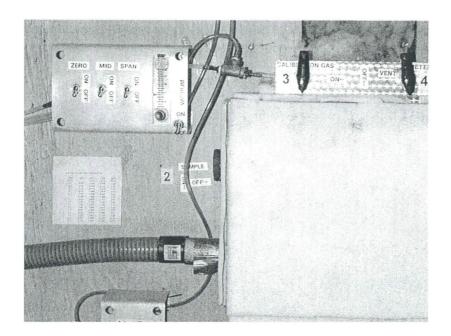
After warming to room temperature, 2" were trimmed from each end of each board to give 44" samples. These were then weighed, placed in the kiln, and dried according to the schedules in Tables 2a and 2b. Sampling for hydrocarbon was done as described in section IV. At the end of drying the wood was weighed, oven dried, and reweighed so initial and final moisture contents could be determined by ASTM D4442.

IV. Sampling Systems and Methodologies

Figures 3a and 3b show the hydrocarbon sampling system. Unlike stack testing, all necessary equipment is mounted on the kiln and flows are controlled with valves and switches. The THC sample was drawn from the kiln directly into a dilution/filter box mounted on the side of the kiln. The box was heated to 125°C. It is assumed that the gas in the kiln is well-mixed and that the composition in the kiln near the exhaust is the same at the composition of the exhaust. The sample line from the box to the analyzer was heated to 133°C. The valve at the back of the analyzer was heated to 145°C. Heated dilution gas can be added to the hydrocarbon sample gas to lower the gas moisture content to the detector.


The fuel gas was hydrogen. The span gas was EPA Protocol 905 ppm propane in air, the mid-gas was certified 412 ppm propane. The zero gas was Grade 5 air. Detailed sampling procedures are in Appendix 1 and a summary is presented below.

Leak checks were conducted before and after the charge was dried. Valves are closed and all components from just behind the probe tip to the valve at the back of the analyzer are placed under a 18-20 inHg vacuum. Less than one inHg pressure change during two minutes is acceptable and this was met.


Total flow and sample flow to the analyzer were checked using an NIST-traceable flow meter. This was done at the beginning and end of each sampling interval. The meter was attached to the system near the probe tip within the heated box. The valves were repositioned so that the sample came from the flow meter rather than the kiln. Readings of flow were made with the dilution gas off. The flow readings were verified by observing the change in the analyzer reading for span gas before and after the dilution gas was turned on. The dilution ratio calculated based on the analyzer readings was within 1 to 2% of that determined by the flow meter. Dilution was used when the gas moisture content in the kiln was greater than 15%.

Calibration of the zero and span of the detector was done at the beginning of each run (about every three hours with one five- and one seven-hour interval each night). The calibration gas was introduced by setting the valves so the calibration gas entered the system near the probe tip at ambient pressure. The calibration was checked at the end of

each run with no adjustments made to the zero or span during the run. The span drift was always less than two percent of full scale for a run and generally less than one percent. The zero drift was minimal during entire drying cycle.

FIGURE 3A. Schematic of heated filter box with air dilution system, heated sample line, and analyzer. Sample enters heated box from back of drawing (box is attached to kiln).

FIGURE 3B. Photo of VOC sampling system showing heated sample box (with white insulation), toggle valves and flow meter for calibration gases (upper left), on/off valve for calibration gas (3 at upper center right), heated sample line to analyzer (green tube, lower left), valve for sample (2 at center), toggle valve to vacuum pump (near calibration gas valves), and vent/flowmeter valve (4 at upper right).

V Data Reduction and Treatment

The "FlowCalc" page in the files "Hampton, Kiln.XLS" in Appendix 2 show the calculations for each 3-minute interval during the charge. Column A is a reading number. Columns B and C are the clock and charge times, respectively. Columns D and E are the average dry- and wet-bulb temperatures. Column F is the vapor pressure at the wet-bulb temperature. The absolute humidity is shown in column G and the molal humidity in column H.

Flow calculations

The volumetric dry gas flow rate in column I (files "Hampton, Kiln.XLS" in Appendix 2) is the flowmeter reading adjusted for the meter calibrations and the molar humidity of the entering gas. This is in standard (at 0° C) liters per minute. In column J this has been converted to a mass flow rate in kg/min and in column K is the same information is expressed as a molal flow rate.

Moisture calculations

The water removal rate in g/min (column L) (files "Hampton, Kiln.XLS" in Appendix 2) is calculated from the humidity and the gas flow rate and the total water (column M) is an integration of column L over time.

The moisture content of the wood at each interval in the event (column N) was determined by reducing the MC of the wood based on the amount of water leaving the kiln during the previous 3-minute interval.

Total hydrocarbon calculations

The original total hydrocarbon analyzer reading is shown in column O (files "Hampton, Kiln.XLS" in Appendix 2). In column P this has been corrected to compensate for the range setting switch on the analyzer and scaling between the analyzer reading and the computer reading. Also in column P, the THA data between sampling runs has been adjusted to the average of the data during the 12-minute periods before and/or after the analyzer testing and calibration time. The dilution THA (column Q) is the corrected THA reading divided by the dilution ratio (from column Y). In column R we have the opportunity to compensate for the effect of moisture on the JUM detector. This was not done so column R equals column Q. Finally in column S, the hydrocarbon concentration is converted to a dry gas basis concentration.

In column T the hydrocarbon flow rate in g/min as carbon is calculated in a manner analogous to the water flow rate using the dry gas flow rate and the hydrocarbon concentration. Column U is the integral of column T over time, the cumulative hydrocarbon release up to that point in the schedule. Column V is the cumulative unit emissions, that is, column U divided by the oven-dry weight of the wood in the kiln.

Column X indicates the hydrocarbon sampling run and column Y is the dilution ratio during that run. The next two columns, Z and AA, are the cumulative dry gas and water during the kiln cycle. These are used obtain the average gas moisture contents. The corrected wood moisture content, as discussed in section VI, is shown in column AC. The kiln air and analyzer air moisture contents are shown in columns AD and AE.

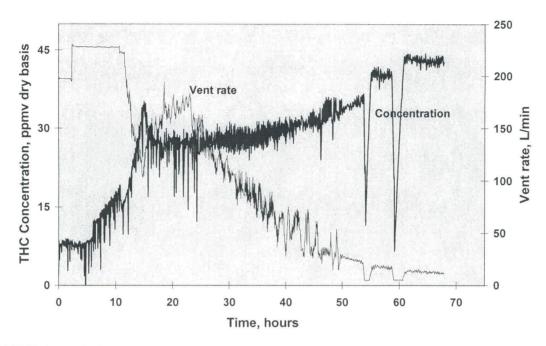
At the end (bottom) of the FlowCalc spreadsheet are summaries by run of the flow data for the total hydrocarbon run intervals.

The other pages in the files "Hampton, Kiln.XLS" are graphs of the data in the FlowCalc page. Moisture content and board weight data are in the files named "Hampton, Board.XLS."

VI. Sampling Results

The hydrocarbon emissions are summarized graphically here. All emission data is presented in detail in Appendix 2. The graphs show the full drying cycle; however, 15% moisture content was reached at approximately 33 and 52 hours, respectively, for the conventional- and high-temperature schedules.

Figures 4a and 4b show total hydrocarbon concentration and vent rate versus time. The vent rate is high first 10 hours, and then decreases. The high vent rate is due to the low wet-bulb temperature and low humidity. The concentration remains low while the vent rate is high, then increases to a maximum. The concentration then continues to increase for the conventional-temperature schedule and decreases for the high-temperature schedule. This difference is probably due to the venting differences which result from maintaining the respective drying schedule. Note that the left ordinate in Figure 4b is on a different scale that in 4a. During the higher temperature schedule, there is a greater concentration, but the venting is less and for a shorter duration (33 vs. 52 hours).


Figures 5a and 5b show the cumulative hydrocarbon emissions and the rate of emissions versus time. The cumulative emissions is the emissions up to any point in time in the schedule. The rate of emissions is how much is coming out per unit time. The maximum occurs at approximately 15 to 20 hours in each schedule.

Figures 6a and 6b show the wood moisture content versus time. The estimated moisture content should most accurately represent the MC-time relationship because the initial and final moisture contents match the oven-dry test. The initial moisture contents were over 110%. The final moisture content was 10.7% for the wood dried using the conventional-schedule and 7.2% for the wood dried using the high-temperature schedule (at 33 and 52 hours, respectively). We also opened the kiln and weighed the wood at approximately 60 hours and 37 hours. The moisture contents at these times were 13.3 and 11.3%.

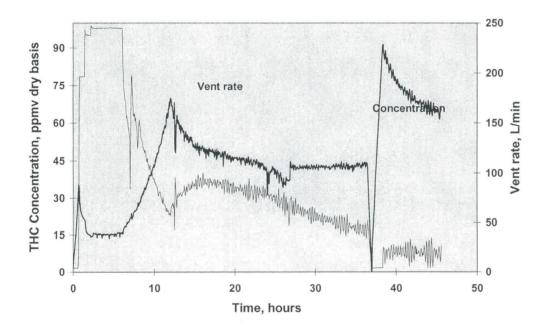
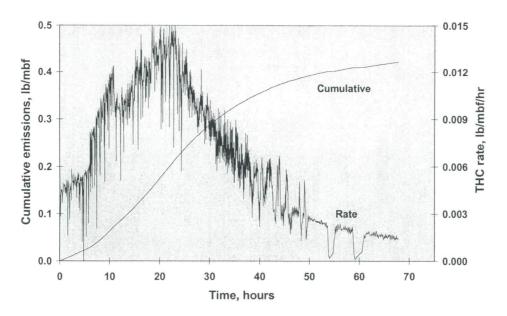

Figures 7a and 7b show the cumulative hydrocarbon emissions versus moisture content. The emissions for drying to any moisture content can be read from this graph. If, for example, a mill wanted to dry to 18% instead of 15%, the total hydrocarbon emissions could be estimated at 0.38 and 0.32 for the conventional- and high-temperature schedules.

TABLE 3. Estimated VOC release at different final moisture contents (read from data file).


	VOC	release
Moisture content	Conventional	High
%	lb/mbf	lb/mbf
12	0.416	0.351
13	0.410	0.346
14	0.405	0.341
15	0.400	0.335
16	0.395	0.330
17	0.391	0.325
18	0.386	0.320

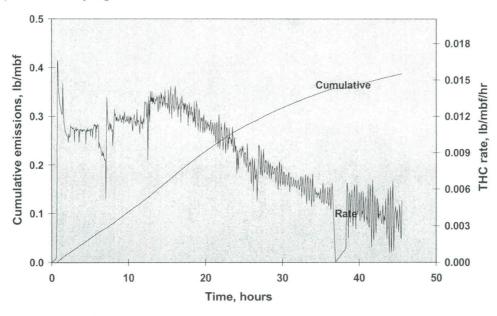

FIGURE 4a. Hydrocarbon concentration and vent rate versus time for the conventional-temperature charge.

FIGURE 4b. Hydrocarbon concentration and vent rate versus time for the high-temperature charge.

FIGURE 5a. Cumulative emissions and rate of emissions versus time for conventional-temperature drying.

FIGURE 5b. Cumulative emissions and rate of emissions versus time for high-temperature drying.

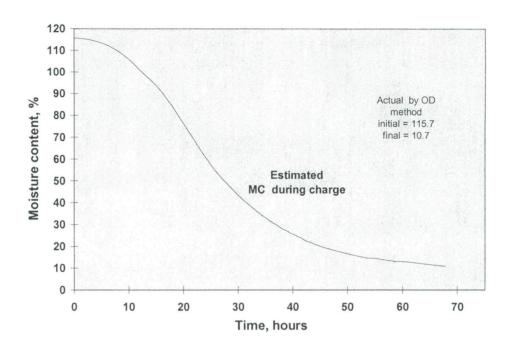


FIGURE 6a. Moisture content versus time for the conventional-temperature charge.

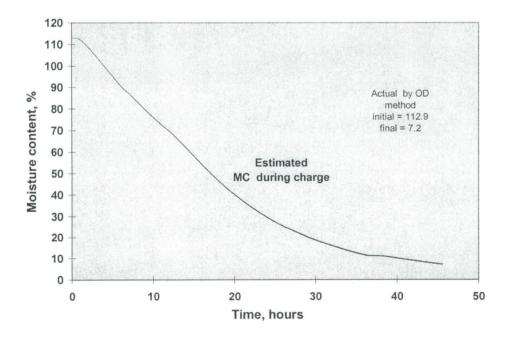


FIGURE 6b. Moisture content versus time for the high-temperature charge.

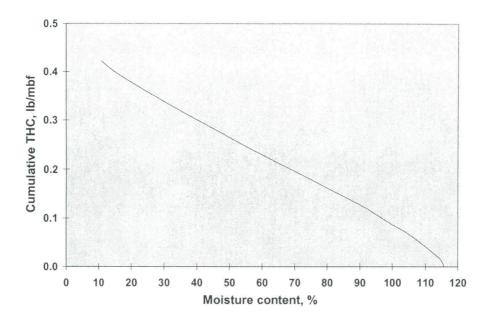
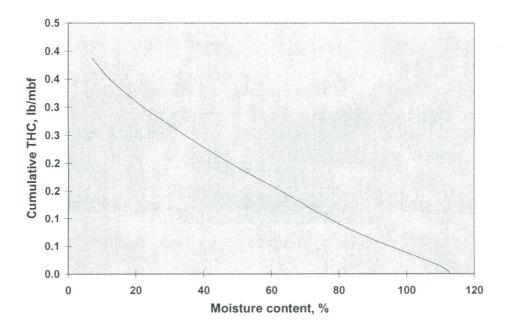



FIGURE 7a. Cumulative emissions versus moisture content of the conventional-temperature charge.

FIGURE 7b. Cumulative emissions versus moisture content of the high-temperature charge.

Table 4 shows the VOC results by run for the charges. The interval time periods shown in the table include the times between sampling and mass calculations are adjusted to account for these. Sampling occurred for approximately 95% of the drying time to 15% MC. Copies of all field sampling sheets, including dilution system and heated component data, in Appendix 3.

TABLE 4a. Summary of sample runs for the conventional-temperature charge.

Sample	Time	Dry Flow	Wet	THC	THC	THC rate	Average	Average	Average
			Flow		mass				
Run		Rate	Rate	wet conc	as C	as C	Wood	Air MC	Anal. MC
		@68	@68				MC		
	hrs	l/min	l/min	ppmv	lbs/mbf	lb/hr/mbf	%	%	%
1,	3.00	219.6	225.7	7.3	0.014	0.0046	115.4	2.7	2.7
2 3	3.00	244.8	258.7	6.9	0.015	0.0049	113.7	5.4	5.4
3	4.80	244.3	272.2	12.2	0.044	0.0092	108.6	10.2	7.7
4	7.55	165.6	208.7	19.2	0.081	0.0107	94.0	20.7	15.5
5	3.10	180.6	238.5	19.9	0.040	0.0130	76.5	24.3	15.0
6	2.75	179.4	236.8	19.9	0.035	0.0129	65.3	24.2	15.0
7	3.14	150.1	198.3	20.0	0.034	0.0110	59.9	24.3	15.1
8	2.25	125.3	165.3	20.9	0.021	0.0095	47.5	24.2	15.0
9	5.10	102.0	134.5	21.0	0.039	0.0077	38.8	24.1	15.0
10	7.90	69.2	91.0	22.3	0.044	0.0056	27.6	24.0	14.6
11	3.46	44.5	58.5	23.6	0.013	0.0038	20.7	23.8	14.5
12	3.15	34.3	44.9	24.7	0.010	0.0030	18.2	23.6	14.4
13	3.70	27.2	35.8	25.8	0.009	0.0025	16.0	24.0	14.7
Sum	52.90				0.400				
Ave.		137.5	166.8	18.7		0.008			

TABLE 4b. Summary of sample runs for the high-temperature charge.

Sampl	Time	Dry Flow	Wet	THC	THC	THC rate	Average	Average	Average
е			Flow		mass				
Run		Rate	Rate	wet conc	as C	as C	Wood	Air MC	Anal. MC
		@68	@68				MC		
	hrs	I/min	l/min	ppmv	lbs/mbf	lb/hr/mbf	%	%	%
1	3.00	189.7	222.0	15.8	0.028	0.0092	110.0	14.6	14.6
2	3.00	262.7	315.1	12.6	0.033	0.0109	97.6	16.6	8.5
3	4.80	140.2	182.1	23.2	0.053	0.0110	81.9	23.0	11.5
4	7.55	88.0	130.5	35.9	0.096	0.0127	59.6	32.6	12.4
5	3.10	91.3	126.3	33.0	0.035	0.0114	40.4	27.7	7.7
6	2.75	86.4	115.1	32.0	0.028	0.0101	32.4	25.0	11.0
7	3.05	76.2	99.2	30.9	0.025	0.0081	28.9	23.2	10.2
8	2.25	66.1	84.7	32.7	0.017	0.0076	21.0	22.0	10.8
9	3.20	57.8	73.1	33.3	0.021	0.0067	17.0	20.9	10.3
Sum	32.70				0.335				
Ave.		117.6	149.8	27.7		0.0097			

VII. Quality Assurance

Leak checks

Leak checks were performed on the VOC system before and after drying.

Calibration

Data for the calibration gases are given in Appendix 4. The mid gas was not named because the analyzer was within tolerance without naming. The calibration sheet for the flow meter is also included is also included in Appendix 4 as is the thermocouple calibration check.

VIII Discussion

There were no anomalies during the conventional- or high-temperature schedules that would affect the data. Data from the first charge, during which there was a data collection problem, is not reported here.

The VOC emission value was greater at the conventional temperature than at the high-temperature. This is inconsistent with what is generally expected; however, in the published literature one can occasionally find where this occurs. There is some variability in this type of data due to the wood. For "identical" replicates we have seen ranges in the past from 1.29 to 1.54 lb/mbf for ponderosa pine and 0.87 to 1.19 for lodgepole pine, 0.46 to 0.51 for Douglas-fir and 0.22 to 0.27 for white fir. Hemlock tends to be at least, if not more variable in wood properties that these other species. Therefore, it is possible that the wood in the kiln varied enough to give these results. We have observed values for hemlock during past studies from 0.07 to about 0.5 lb/mbf. We have seen the emissions from hemlock wood from the same source vary by a factor of two. Therefore, the results are not surprising.

Appendix 1. Detailed Sampling Procedures

INSTRUCTIONS FOR CHECKS OF EMISSIONS KILN

Purpose: Ensure kiln is operating correctly

Clock time: Record from computer

Run time: Record from computer. Check the box if the computer screen being refreshed

and time is advancing.

Box temperature: Read from metal electrical box under desk, left controller. The top and bottom numbers should be similar on the box should be similar, about 126 C..

Valve temperature: Read from metal electrical box under desk, right controller. The top and bottom numbers should be similar on the box should be similar, about 154 C..

Dry-bulb temperature: Read from computer screen. Compare to graph to be sure it's correct. If it's not within a degree or two of the chart, check again in a few minutes. During startup (the first 3 or so hours), it may not be able to track. If it's too high, the heat valve should be closed, too low and the heat valve should be open. If it does not appear to be working correctly, call Mike or Mark.

Wet-bulb temperature: Read from computer screen. Compare to graph to be sure it's correct.

If it is too low, it means that the kiln atmosphere is too dry. Check the flow meters. If Flow1 is about 10 L/min (its lower limit), make sure that Flow2 and Flow3 are turned off

If it's too high, then either the kiln atmosphere is too humid or the sock is not being wetted. If Flow 1 is near 200 L/min (its upper limit) add venting by opening Flow2 and/or Flow 3. The maximum for Flow2 is 50 L/min, if it reads over this value for several readings, reduce it to about 45 L/min. Don't change Flow3 often, rather set it and leave it for several hours if possible. Keep the Flow 3 reading constant by small adjustments. As Flow1 decreases or Flow2 turned down, there is more pressure behind Flow3 and the flow increased. Check for water in the wet-bulb reservoir (push the float down and make sure it's getting water).

Check both Wet-bulb1 and Wet-bulb2 and make sure they are reading about the same. If they differ by more than 2 C, call Mike or Mark.

If both wet-bulbs are reading the same as the dry-bulb, check the wet-bulb water.

If these procedures do not correct the wet-bulb temperature within 30 minutes, call Mike or Mark.

Line temperature: Read from gray box on wall above analyzer. It should read about 275°F.

Chiller temperature: Read the chiller temperature. It should be about -1°C.

Flow 1: Read from computer. The value of Flow1 changes depending on the wet-bulb. If Flow 1 is 10 L/min and the wet-bulb is too low, there's probably nothing we can do. If it's 200 L/min and the wet-bulb is too high, Flow2 and/or Flow3 can be opened. Flow2 and Flow3 should be adjusted so that Flow1 stays below 175 to 200 L/min.

Flow 2: Read from computer. The value of Flow2 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Do not set it to < 40 L/min if you think Flow1 is going to decrease or it will go off scale and not be read by the computer

Flow 3: Read from meter. The value of Flow3 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Be sure to clearly record this value and when you change it

Dilution flow: Read dilution flow meter. It should read the same setting as the red flag. Do not adjust. If significantly different, investigate.

F/M Flow: Read from rotometer. This should be about 400 to 500 cc/min.

Line vacuum: Read from the vacuum gauge. This should be about 20"Hg.

INSTRUCTIONS - FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER PRE-SAMPLE PROCEDURE

BACKGROUND INFORMATION

Get the dry- and wet-bulb temperatures from the kiln schedule or off the computer. Use the highest expected values for the run.

Read absolute humidity off the psychrometric chart or table.

Calculate or read from tables -

Percent moisture = 100 / [1 + 1 / 1.61*AbHum]
Target Dilution Ratio (TDR) = 15 / Percent Moisture

Event = the name of the drying cycle.

Run = the number of the 3-hour interval.

Operator, that's you.

Date and time are now, as you start the data collection process.

AMBIENT DATA

Call 9-754-0081 and get altimeter setting.

Read the laboratory temperature from the thermometer.

ANALYZER CALIBRATION

Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Open the zero gas tank valve

zero toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank wait for a stable reading (about 30 to 60 seconds) use the zero dial (pot) on THA to get a zero reading read the analyzer read computer note pot setting close valve on zero gas tank

Open span gas tank valve

span toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank set analyzer to range 3 wait for a stable reading (about 30 to 60 seconds)

use the span dial (pot) on THA to get a reading of 905 ppm read the analyzer, record, for example, 9.05 or 900 read computer (should read about 905) note pot setting

Open mid gas tank valve

mid toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank wait for a stable reading (about 30 to 60 seconds) read analyzer (do not adjust pot settings), record, for example, 4.12 or 412 read computer (should about 412) check for within tolerance turn off mid gas all toggle switches off

SET DILUTION FLOW BEFORE RUN

Set valves so that 1, 2, 3 = off; 4=meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 4 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min

Make sure the average does not include any "bad" readings

Record the average, L/min = cc/min / 1000

Write the Event, Run, and "Pre-TFR" on the Gilibrator printout.

Calculate the next two values -

Target dilution flow rate (TDFR) is the TFR \times (1 - DR)

Target sample flow rate (TSFR) is the TFR x DR

Check that the sum of these is the Total Flow Rate

Set dilution flow

Set red pointer to desired dilution flow (on meter with valve 1)

Slowly open lower valve on dilution flow meter (1=on; 2, 3=off; 4=meter)

Use upper valve on dilution flow meter to adjust flow

Do not adjust this meter after this point

Read the meter that you just set and record the value

Use the Gilibrator to take 4 readings of the sample flow rate (SFR). This is the flow through the analyzer after dilution is set. It will vary, depending on the dilution setting.

Make sure the average does not include any "bad" readings

Record the average, L/min = cc/min / 1000

Write "Pre-SFR" on the Gilibrator printout.

CHECK DILUTION FLOW BEFORE RUN

Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve

span toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank set analyzer to range 3 wait for a stable reading (about 30 to 60 seconds) record turn off all calibration gas tank valves all toggle switches off

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate the dilution ratio based on span gas by dividing the Diluted span by the undiluted span.

If the Dilution ratios do not agree within 5% - DO NOT PROCEED****. Use $100*(DR_{Span}$ - DR_{Flow})/DR $_{Flow}$ to calculate the % difference.

**** check calculations, check that values for ppm and flows make sense, remeasure everything. If it still does not agree, call Mike or Mark

START RUN

Set valve so that 1, 2, 5 = on; 3, 4=off; all calibration tank valves off

Record the start time. Use the computer clock for all times or set your watch to the computer time.

Make sure analyzer is on appropriate range, usually range 3, to keep THC reading on computer between 60 and 750.

Monitor system, as needed. Record system condition at least hourly.

End time should be no more than 3 hours from start time.

POST-SAMPLE PROCEDURE

AT END OF RUN

Record your name as the operator.

Event = the drying cycle. Run = the 3-hour interval.

Operator, that's you. Date and time are now, as you start the data collection process.

AMBIENT DATA

Call 9-754-0081 and get temperature and altimeter Local pressure = (Altimeter - 0.23) x 3.3867 Read the laboratory temperature from the thermometer.

Fill out appropriate information on Pre-sample side of data sheet for next run. This will save time in between runs.

END TIME

Record computer time.

DO NOT adjust dilution gas yet.

CHECK DILUTION FLOW AFTER RUN

Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve

span toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank wait for a stable reading (about 30 -60 seconds) record all toggle switches off

Sample flow rate. Set valves so that 1=on; 2, 3 = off; 4=meter. This allows gas to flow only from the meter and the dilution to the detector.

Use the Gilibrator to take 5 readings of the sample flow rate (SFR). This is the flow through the analyzer with dilution on.

Make sure the average does not include any "bad" readings Record the average, L/min = cc/min / 1000

Write "Post-SFR" on the Gilibrator printout.

Read dilution flow meter
To calculate the L/min, divide scfh by 2.12
Turn off dilution flow meter using valve 1

Total flow rate. Set valves so that 1, 2, 3 = off; 4=meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 5 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min Make sure the average does not include any "bad" readings Record the average, L/min = cc/min / 1000 Write "Post-TFR" on the Gilibrator printout.

CHECK CALIBRATION OF ANALYZER

Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Span gas tank valve should be open

span toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

set analyzer to range 4

wait for a stable reading (about 30 -60 seconds)

read analyzer (do not adjust pot settings), record, for example, 1.50 as 1500

read computer (should read about 152 due to range 4 setting)

note pot setting

check for within tolerance - between 1483 and 1573

Open mid gas tank valve

mid toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

set analyzer to range 3

wait for a stable reading (about 30 -60 seconds)

read analyzer (do not adjust pot settings), record, for example, 8.50 as 850

read computer (should read same as analyzer)

check for within tolerance

Open the zero gas tank valve

zero toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

wait for a stable reading (about 30 -60 seconds)

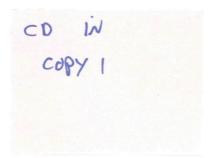
read analyzer (do not adjust pot settings)

read computer

note pot setting

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.


Calculate % difference as 100 * {Absolute Value (DR $_{\rm Span}$ -DR $_{\rm Flow}$)} / DR $_{\rm Flow}$

Record the time now as the end time for check.

Tear off the four sets of Gilibrator readings (Pre-TFR, Pre-SFR, Post-SFR, Post-TFR) and staple to paper with other records.

Start Pre-Sample procedure for next run.

Appendix 2. Data in Electronic Form

Appendix 3. Field data sheets.

			ine	2 6	E G	20		1			F	1	T				J			I	
			_	_	L		1	-	1	T	1	_	1	+	1	1		1	1		
				E/M	mi//min		+	1	1	1	+	+	+	+	+	+	+	+	+	+	
-			Flows				Ø (1	30	7	8 (XV		10	1	A U	5	8 (6	707	1
					-		F		F	F	T	1	T	1	丰	丰	#	丰	Z	-	#
				m	SCFH	0	C))	0	0	0		0	2)(10	5	5		
				2	L/min	6	C		0		30	00	, 0	0	C	2		3 6	1	2	T
				-	L/min	200	197	000	E	7	8	E	t	300	(1.8)	73	200	2	1	NA NA	
				Chiller	ပွ	\ \		F			-	F		F		-			12/2	2	1
			4	Aniz	ပ္	-		F			-								200	1-	1
			es	Line	Ÿ.	774	27	374	4 (274	ACE	274	773	223	273	273	273	111	1	272	
(1)	~		atur	>		-					F				1						ļ
Time	70:11		Temperatures	Wet-	ာ့	19	99	28	99	99		99	63	29	63	79	77	E	M	25	
te	3-24-04			Dry- bulb	၁့	83	83	68	83	83	83	83	83	83	83	83	83	83	ho	78	H
Date	8			Valve	ပွ	144/	X	Ē	133	145	_	145	云	3	无	144	12/	145	Cho		
	Start:	End:		Вох	ပွ	125	カで	901	125	125	50/	125	125	DE1	125	125	125	125	Kiln	125 1	
L		***************************************	Run		#	9	7	80	100	0	11	11	7	13	Q	13	13	13		别	
20	Hampton Affiliates	7	Run	reed time	hrs	0.02	30.K	3:33	5177	10:01	18:31	1106	D705	0:70	000	059	94:1	2.55	STOMP	0:00	
Charge: 3	Hampto	Page:	Clock	time		11:40	1.43	2:58	503	d'im	5.56	11.1	9:23	11:16	13:17	カミ	2001	018	500	91:01	

3.364

OIT	Charge: 🧳 J Hampton Affili	Charge: 🎉 J Hampton Affiliates	ø	Start		3-24-04		Time :06 д М	Z										
ш.	Page:	_		End:											e"	*	×		
	Clock	Run	Run	L			ř	Temperatures	ures						Flo	Flows		Line	
	time	time	>	Вох	Valve	Dry- bulb	>	Wet- bulb	Line	Anfz	Chiller	-	2	3	D	Dilution	F/M	Vac.	
		hrs	#	ပ္	ာ့	ပ္		ပ္	Ļ	ပ္	ပွ	L/min	L/min	SCFH	S	SCFM	ml/min	inHg	
Ļ	11:03	Pre	7	125	专))	273	180	5)	1			12	5	
	11:09			126	144	25	2	20	1 273	181	\ 	7	0	0	,	0	/		
	11:35	on Contract Spinish	7	461	(天	99	>	25	123	(80	} {	200	0	0					
	38:	2:32	~	125	145	35		3/	273	3 180		200	100	0				\sim	
, ,	TOP.	21.58	7	135	145	38		34	273	180)	761	38	0		0			
(()		3.4	12	135	さ	39		36	274	180		194	38	0		2			
w)	5,06	(0.9)	6/	135	145	47		43	122	180		461	33	0		0			
		10.4/	/ 3	101	144	69		Sy	274	1	\	161	1	230		0			
	10:13	11:04	4	135	145	63		55	466	1	_	961	29	0	(a)	100		_	
325	S:18	20:81	7	125	145	28		59	4CE	1		(K)	33	0		\$			
~	5:30	18:34	5	125	145	78		59	474	1		901	3740	D	(0	2,0	_		
	1.43	20.3	<u> </u>	125	145	B		65	774	!		153	0	0	()E	2,6			
8	8:13	21:33	9	126	145	18		99	273	((451	0	0		3,6			
	70:0	23,00	9	125	144	83		99	1274	())	183	9	0	1 "	لعا			
**	1,31	34,35	9	125	146	83		29	274			132	0	0	7				
	Respon	4	warmen	+ was	Sare	100	,	Sina	1 57 R.	data)						/	gad * Drock g	
1		>	0						9								_		1

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGR	COND INFORMA	TION							
-	emperature: $\frac{\sim}{\sim}$		Event (kiln charger): _	ge): <u>Hampton ≸ ∂</u>	2				
Absolute humidity: < 0.03 Operator: Milota									
Percent moisture: 4 Date: $3-24-04$									
	Target Dilution Ratio (TDR): D Time now: 10:50a								
	= 2250psi				-				
Altimeter setting: 2999 inHg Laboratory temperature: 24 °C									
ANALYZĘR CALIBRATION [1, 2 = off; 3=on; 4=vent]									
	Analyzer, ppm	Computer	Within range	Pot setting	1				
zero 0 (0) — does not apply 482									
span 905 (1527) does not apply 203									
mid	413		379 to 437	none					
SET DILU	TION FLOW BEI	ORE RUN	t prof.						
Total flow	rate (TFR):	2.575	_ L/min	[1, 2, 3 = off; 4=r	meter]				
Target dilu	tion flow rate (TD	FR)	_ L/min	[TFR x (1	- DR)]				
san	nple flow rate (TS	FR)	_ L/min	[TFR	x DR]				
Set and re	ead dilution meter	:	_ scfh	[scfh = L/min *	2.12]				
Sample flo	ow rate (SFR):		_L/min [1 =	on; 2, 3 = off; 4=r	neter]				
CHECK D	ILUTION FLOW	BEFORE RUN		1, 3=on; 2=off; 4:	=vent]				
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 1	Difference, % 00*(DR _{Span} - DR _{Flow})/	DR Flow				
Span _{Dilu}	ited	-							
START TI			1, 2, 5 = on; 3, 4	= off; tank valve	s off]				
ANALYZE	ANALYZER RANGE: [60 < computer reading < 750]								

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - POST

Operator: Milita		E	Event (kiln c	harge): <u>Hampton 💈 </u>
Time now: 2:06		F	Run (sample):
AMBIENT DATA Airport pressure: 29,99 inH	g	Laborat	ory tempera	nture: <i>2\4_</i> °C
END TIME: 2:06				
CHECK DILUTION FLOW AFTE				3=on; 2=off; 4=vent
	Analyzer			Computer
Span _{Diluted}	\			
Sample flow rate (SFR) :		_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter: scfh	1	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four sets	of data)	_ L/min	. [1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):		-		[SFR/TFR]
CHECK OF ANALYZER CALIBR	RATION		[1,	2=off; 3=on, 4=vent]
	Computer	With	in range	Pot settings
span 905	105	875	to 935	
mid 4/2 4	H3	379	to 437	none
zero		-45	to +45	
Dilution ratio (DR _{Span}):				[Span _{Diluted} / Span]
Dilution ratio difference:		% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:				
Comments: SPAN EPA	Promol C	705 PR	M) CH	in au
Mid Testifier	412 00	3	730	
Lenh chech @ 10:53	18,5 in Hg v	AC ->	17.9 10):56

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGROUND INFORMA	ATION					
Dry-bulb temperature:	0	Event (kiln charge): Hampton ま つ				
Wet-bulb temperature: Lo		Run (sample):				
Absolute humidity:		Operator: Milota				
Percent moisture: <5%		Date: _ 3-24-04				
Target Dilution Ratio (TDR):		Time now: 2100				
AMBIENT DATA						
Altimeter setting: 29,99 inHg		Laboratory temperature: 34 °C				
ANALYZER CALIBRATIO	N	[1, 2 = off; 3=on; 4=vent]				
Analyzer, ppm	Computer	Within range	Pot settings			
zero g (0)	1	does not apply	482			
span 965 (1527)	905	does not apply	203			
mid 412	413	379 to 437	none			
SET DILUTION FLOW BEFORE RUN						
Total flow rate (TFR):	2.582	_L/min [1	[1, 2, 3 = off; 4=meter]			
Target dilution flow rate (TDFR)		_L/min	[TFR x (1 - DR)]			
sample flow rate (TS	sample flow rate (TSFR)		[TFR x DR]			
Set and read dilution meter:		_ scfh	[scfh = L/min * 2.12]			
Sample flow rate (SFR):		_ L/min [1 = on	; 2, 3 = off; 4=meter]			
CHECK DILUTION FLOW	BEFORE RUN	[1,	3=on; 2=off; 4=vent]			
Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 100°	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}			
Span _{Diluted}						
START TIME: 2:10	_ [1	, 2, 5 = on; 3, 4 =	off; tank valves off]			
ANALYZER RANGE: [60 < computer reading < 750]						

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - POST

Operator: Milots			Event (kiln charge): Hampton ≸ ⊋			
Time now:	5:06 p		Run (sample):			
AMBIENT	DATA					
Airport pressure: 2999 inHg		Laboratory temperature: <u>24</u> °C				
END TIME:	5:06	-				
CHECK DILUTION FLOW AFTER RUN				[1, 3=on; 2=off; 4=vent.]		
		Analyzer			Computer	
S	pan _{Diluted}					
Sample flow	w rate (SFR) :	_	_ L/min	[1= on	, 2, 3 = off, 4=meter]	
Read dilution	on meter:	_ scfh\	L/min		[L/min = scfh*0.472]	
Total flow r (attach prin	ate (TFR): It out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]	
Dilution rati					[SFR/TFR]	
CHECK OF	ANALYZER CA	ALIBRATION		[1	2=off; 3=on, 4=vent]	
	Analyzer	Computer	Within range		Pot settings	
span	9023	903	875	to 935	48203	
mid	413	414	379 to 437		none	
zero	0	1	-45 to +45		487	
Dilution rat	io (DR _{Span}):	_			[Span _{Diluted} / Span]	
Dilution rat	io difference:		% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]	
End time fo	or check:					
Comments:		\				
			· · · · · · · · · · · · · · · · · · ·			

Operator: M. J. TA		Event (kiln charge): Hampton 1 Run (sample):			
AMBIENT DATA					
Airport pressure: 29,97	inHg	Laboratory t	empera	ature: <u>25 °C</u>	
END TIME: 10:00					
CHECK DILUTION FLOW				3=on; 2=off; 4=vent]	
Cnon	Analyzer			Computer	
Span _{Diluted}					
Sample flow rate (SFR) :	_	_ L/min	[1= on	, 2, 3 = off, 4=meter]	
Read dilution meter:	_ scfh	_ L/min		[L/min = scfh*0.472]	
Total flow rate (TFR): (attach print out with all fou	ır sets of data)	L/min	[1	, 2, 3 = off; 4=meter]	
Dilution ratio (DR _{Flow}):				[SFR/TFR]	
CHECK OF ANALYZER C	ALIBRATION		[1,	2=off; 3=on, 4=vent]	
Analyzer	Computer	Within rai	nge	Pot settings	
span 902	903	875 to 93	35	202	
mid 4/2	413	379 to 43	37	none	
zero	0,5	-45 to +4	45	482	
Dilution ratio (DR _{Span}):	\			[Span _{Diluted} / Span]	
Dilution ratio difference:		% [100*(A	bs(DR _s	Span - DR Flow))/DR Flow]	
End time for check:	10:02				
Comments: Analy 291	n ternal T	15 Spass	tic ,		
but analyzerse	Stable	,			

BACKGROUND INFORMATION

Dry-bulb temperature: 40-50C

Wet-bulb temperature: 35- 40 C

Absolute humidity: 10-

Target Dilution Ratio (TDR):

Event (kiln charge): Hampton 1

Run (sample):

Operator: Milota

Date: 3-24-07

Time now: 5:05

AMBIENT DATA

Altimeter setting:

Laboratory temperature: 24 °C

ANALYZER CALIBRATION			[1, 2 = off; 3=on; 4=vent		
9	Analyzer, ppm	Computer	Within range	Pot settings	
zero	403 (0)	(0) does not apply		4-82	
span	103/40/3/ (1527)	903	does not apply	203	
mid	0 413	414	379 to 437	none	

SET DILUTION FLOW BEFORE RUN

Total flow rate (TFR):

2,600 L/min

[1, 2, 3 = off; 4=meter]

Target

dilution flow rate (TDFR)

sample flow rate (TSFR)

L/min L/min

[TFR x (1 - DR)]

[TFR x DR]

Set and read dilution meter:

Sample flow rate (SFR):

scfh L/min [scfh = L/min * 2.12]

[1 = on; 2, 3 = off; 4=meter]

CHECK DILUT	[1, 3=on; 2=off; 4=vent]				
Analyz		zer DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Diluted}				·	

START TIME: 5:10

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE: 3

BACKGROUND INFORMATION

Dry-bulb temperature: 60 - 70 °C

Wet-bulb temperature: ___53- 60 °C

Absolute humidity: ____ ~ O, |

Percent moisture: ~ 15

Target Dilution Ratio (TDR): 0,8

Event (kiln charge): Hampton # 2

Run (sample): 4

Operator: Milota

Date: 3-24-04

Time now: 9:45

AMBIENT DATA

Altimeter setting:

2997 inHg

Laboratory temperature: 25 °C

ANALYZER CALIBRATION			[1, 2	= off; 3=on; 4=vent]
	Analyzer, ppm Computer		Within range	Pot settings
zero			does not apply	482
span	905 (1527)	906	does not apply	204
mid	413	413	379 to 437	none

SET DILUTION FLOW BEFORE RUN

Total flow rate (TFR):

2.605 L/min

[1, 2, 3 = off; 4=meter]

Target

dilution flow rate (TDFR)

L/min

[TFR x (1 - DR)]

[TFR x DR]

L/min Set and read dilution meter: 13 _______

[scfh = L/min * 2.12]

Sample flow rate (SFR):

L/min

scfh

[1 = on; 2, 3 = off; 4=meter]

CHECK DILUT	[1, 3=on; 2=off; 4=vent]				
	Analyzer DR _{Span} [Span _{Diluted} /Span]		DR Flow [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Diluted}	9748	0,748	0.747	0,13	

START TIME: 10:10

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE: 3

perator: Event (kiln charge): <u>Hampton</u> €				
Time now:5.19 a	Run (sample):): <u> </u>
AMBIENT DATA				
Airport pressure: 29,75	inHg	Laborat	ory tempera	ture: <u>26 </u> °C
END TIME: 5:19				
CHECK DILUTION FLOW A	FTER RUN		[.1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Diluted}	666			666
Sample flow rate (SFR) :	1,965	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter: 1,33				[L/min = scfh*0.472]
Total flow rate (TFR): $\frac{2.598}{\text{(attach print out with all four sets of data)}}$ L/min [1, 2, 3 = off; 4=meter			, 2, 3 = off; 4=meter]	
Dilution ratio (DR _{Flow}):	0.756			[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	With	in range	Pot settings
span 891	892	875	to 935	204
mid 407	407	379	to 437	none
zero	1,5	-45	to +45	482
Dilution ratio (DR _{Span}):	0,747			[Span _{Diluted} / Span]
Dilution ratio difference:	1.2	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	5:26a			
Comments:				

BACKGROUND INFORMATION	
Dry-bulb temperature:	Event (kiln charge): Hampton ♣ ♀ Run (sample):5 Operator:Milota Date:3-♀ 5- 0 ↓ Time now:5 ♀ >> ○
AMBIENT DATA Altimeter setting: 29.75 in Hg	Laboratory temperature: 26 °C

ANALYZE	R CALIBRATIO	Υ	[1, 2 = off; 3=on; 4=vent		
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	0) does not apply		480	
span	905 (1527)	905	does not apply	212	
mid	412	412	379 to 437	none	

SET DILUTION FLOW BEFORE RUN							
Total flow rate (TFR):	2.606	_ L/min	[1, 2, 3 = off; 4=meter]				
Target dilution flow rate (TDFR) sample flow rate (TSFR)	7 1,641	L/min	[TFR x (1 - DR)]				
sample flow rate (TSFR)	> 0,964	_ L/min	[TFR x DR]				
Set and read dilution meter:	2,5	_ scfh	[scfh = L/min * 2.12]				
Sample flow rate (SFR):	1,611	_ L/min	[1 = on; 2, 3 = off; 4=meter]				
CHECK DILUTION FLOW BEFORE RUN [1, 3=on; 2=off; 4=vent]							

ì	CHECK DILUT	[1, 3=on; 2=off; 4=vent]			
	2	Analyzer DR _{Span} [Span _{Diluted} /Span]		DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}
	Span _{Diluted}	559	0,617	0,618	0.16%

START TIME: 5:33

ANALYZER RANGE: 3

[1, 2, 5 = on; 3, 4 = off; tank valves off]

Operator: _	Milota		Event (kiln charge): Hampton 季 <				
Time now:	8:33a	3-25-04	Run (sample):5				
,		The state of the s		, ,			
AMBIENT							
Airport pres	ssure: <u>29,70</u>	_ inHg	Laborat	ory tempera	ıture:2 <u>5</u> °C		
END TIME	: 8:33	_					
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]		
		Analyzer			Computer		
S	pan _{Diluted}	555		3.	56		
Sample flo	w rate (SFR) :	1.607	_ L/min	[1= on	, 2, 3 = off, 4=meter]		
Read diluti	on meter: scfh L/min [L/min = scfh*0.4		[L/min = scfh*0.472]				
Total flow r	flow rate (TFR): $\frac{2.583}{\text{of data}}$ L/min [1, 2, 3 = off; 4=mete		, 2, 3 = off; 4=meter]				
Dilution rat		0.622			[SFR/TFR]		
CHECK OF	F ANALYZER CA	ALIBRATION		ſ 1.	2=off; 3=on, 4=vent]		
	Analyzer	Computer	With	in range	Pot settings		
span	902	903	875	to 935	210		
mid	412	413	379	to 437	none		
zero	0	2	-45	to +45	480		
Dilution rat	io (DR _{Span}):	0615			[Span _{Diluted} / Span]		
Dilution rat	io difference:	1.12	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]		
End time for	or check:	8:37					
Comments	:						
The second secon							

BACKGRO	OUND INFORMA	TION	***	,	
Dry-bulb temperature: 82			Event (kiln charge): Hampton 🕏 🤉		
Wet-bulb to	emperature:(6	Run (sample):6		
Absolute h	umidity:	,2	Operator: M	ilota	
	oisture:		Date: 3-6	25-	04
	ition Ratio (TDR)		Time now :		
			Paragraphic Control of the Control o		
AMBIENT	DATA				
Altimeter s	etting: 29	70 inHg	Laboratory ten	npera	ture:25_°C
ANALYZE	D CALIDDATION				
ANALIZE	R CALIBRATION Analyzer, ppm	Computer	Within range	_	= off; 3=on; 4=vent] Pot settings
zero	(0)		does not apply		480
span	905 (1527)	905	does not app		213
mid	413	412	379 to 437		none
SET DILUT	TION FLOW BEF	ORE RUN			
Total flow r	rate (TFR):	2.589	L/min	[1	, 2, 3 = off; 4=meter]
Target	ion flourets (TD	ED)	Library		(TED (4 DD) 1
	ion flow rate (TD		L/min		[TFR x (1 - DR)]
	ple flow rate (TS		_ L/min		[TFR x DR]
Set and rea	ad dilution meter	2	_ scfh		[scfh = L/min * 2.12]
Sample flor	w rate (SFR):	1,606	_ L/min [1 :	= on;	2, 3 = off; 4=meter]
CHECK DI	LUTION FLOW	BEFORE RUN	F	[1.	3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Dilut}	ed 560	0,619	0,620		0.168
	0.10				

START TIME: 842

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE: ______

FIELD DATA SHEET	FOR TOTAL HYDROC	ARBON ANALYZER - POST		
Operator: Milota Event (kiln charge): Hampton \$2				
Time now:	Time now:			
AMBIENT DATA				
		211		
Airport pressure: 29,64 inHg Laboratory temperature: 24 °C				
END TIME: 11:40				
CHECK DILUTION FLOW A	FTER RUN	[1, 3=on; 2=off; 4=vent]		
	Analyzer	Computer		
Span _{Diluted}	5 58	559		
Sample flow rate (SFR) :	L/m			
Read dilution meter: 2	scfhL/m	in [L/min = scfh*0.472]		
Total flow rate (TFR): (attach print out with all four	sets of data) L/m	in [1, 2, 3 = off; 4=meter]		
Dilution ratio (DR $_{\text{Flow}}$):	0,632	[SFR/TFR]		
CHECK OF ANALYZER CA	LIBRATION	[1, 2=off; 3=on, 4=vent]		
Analyzer	Computer W	ithin range Pot settings		

8:42 A

CHECK O	F ANALYZER C	ALIBRATION	[1,	2=off: 3=on, 4=vent]
	Analyzer	Computer	Within range	Pot settings
span	901	902	875 to 935	212
mid	412	411	379 to 437	none
zero	0	1,5	-45 to +45	480
Dilution rat	tio (DR _o)	0.618		[Snan / Snan]

Dilution ratio (DR _{Span}):	0,618	[Span _{Diluted} / Span]
Dilution ratio difference:	0,55 %	[100*(Abs(DR _{Span} - DR _{Flow}))/DR _{Flow}]
End time for check:	11:44	
Comments:		

BACKGR	OUND INFORMA	TION		-
Dry-bulb temperature:		Event (kiln charge): <u>Hampton ₺</u> 2		
Wet-bulb temperature:6_6		Run (sample):	7	
Absolute I	numidity:		Operator: Milota	
Percent m	noisture:	erangering and financiaris and control of major place (see	Date: 3-25	- 04
Target Dil	ution Ratio (TDR)): 0.6	Time now :	.8
AMBIENT	DATA			
Altimeter		o— inHg	Laboratory tempera	nture:24°C
ANALYZE	R CALIBRATION	N	[1, 2	= off; 3=on; 4=vent]
	Analyzer, ppm	Computer	Within range	Pot settings
zero	(0)	1,5	does not apply	480
span	905 (1527)	906	does not apply	215
mid	414	45	379 to 437	none
SET DILU	TION FLOW BEI	FORE RUN		
Total flow	rate (TFR):	2,587	_ L/min [1	, 2, 3 = off; 4=meter]
Target dilu	ition flow rate (TD	0FR)	L/min	[TFR x (1 - DR)]
san	nple flow rate (TS	,	_ L/min	[TFR x DR]
Set and re	ead dilution meter	: _2	_scfh	[scfh = L/min * 2.12]
Sample flo	ow rate (SFR):	1,612	_ L/min [1 = on;	2, 3 = off; 4=meter]
CHECK D	ILUTION FLOW			3=on: 2=off: 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}
Span	uted 561	0.612	0,623	0,534 1.8%
START T	ME: 11;48	_ [1	1, 2, 5 = on; 3, 4 = o	off; tank valves off]
ANALYZE	R RANGE:	$-a_{11:52}$	[60 < comp	uter reading < 750]
Vent or Meter open until (1:54 BAD DATTA 11:48 > 11:54				
BAD DATA 11:48->11:54				

H2 at 2000 psi

FIELD DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: Milota	Event (kiln charge): Hampton 1			
Time now: 2:48	application of the second of t	F	Run (sample):
AMBIENT DATA				
Airport pressure: 29,70	_ inHg	Laborat	ory tempera	ture: <u>24 °</u> c
END TIME: 2:48	-			
CHECK DILUTION FLOW	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Dilluted}	55/		5.	57
Sample flow rate (SFR) :	1,587	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter:	scfh	_ L/min	1	[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0,618	-		[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]
Analyzer	Computer	With	in range	Pot settings
span 905	905	875	to 935	215
mid 415	416	379	to 437	none
zero ()	0	-45	to +45	480
Dilution ratio (DR _{Span}):	0.616			[Span _{Diluted} / Span]
Dilution ratio difference:	0,32	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	2:51			
Comments:				

BACKGROUND INFORMA	ATION		
Dry-bulb temperature:	32	Event (kiln charge): Hampton * 2	
Wet-bulb temperature:66		Run (sample):	
Absolute humidity:		Operator: Milota	a
Percent moisture:		Date:	3-25-04
Target Dilution Ratio (TDR): <u>0,6</u>	Date:	38
AMBIENT DATA			
Altimeter setting: 29,70 inHg		Laboratory temper	rature: <u>24 °</u> c
ANALYZER CALIBRATIO			2 = off: 3=on: 4=vent]
Analyzer, ppm	Computer	Within range	Pot settings
zero (0)	0	does not apply	486
span 905 (1527)	905	does not apply	215
mid 415	416	379 to 437	none
SET DILUTION FLOW BE			
Total flow rate (TFR):	2,573	L/min [1, 2, 3 = off; 4=meter]
Target dilution flow rate (TI	DFR)	_ L/min	[TFR x (1 - DR)]
sample flow rate (TS	SFR)	_ L/min	[TFR x DR]
Set and read dilution mete	r: <u>2</u>	_scfh [scfh = L/min * 2.12	
Sample flow rate (SFR):	1,593	_ L/min [1 = or	n; 2, 3 = off; 4=meter]
CHECK DILUTION FLOW	BEFORE RUN	[1	, 3=on; 2=off; 4=vent]
Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 100	Difference, % D*(DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted} 561	0,612	0,619	1.1%

START TIME: 2:54

ANALYZER RANGE: 2

[1, 2, 5 = on; 3, 4 = off; tank valves off]

Operator: $M_i \sigma_i$ Time now: $5 \sigma_i$	9	Е	Event (kiln c	harge): <u>Hampton ≯ ⊃</u>
Time now: 5103	P	F	Run (sample	9):8
	1			
AMBIENT DATA	•			
Airport pressure: 29	.76_ inHg	Laborat	ory tempera	ture: 24 °C
END TIME: 5:04	<u>t</u>			
CHECK DILUTION FL	OW AFTER RUN		[1,	3=on; 2=off; 4=vent]
	Anal	yzer		Computer
Span	56	60	,	560
Sample flow rate (SFR			[1= on	, 2, 3 = off, 4=meter]
Read dilution meter: _	2 scfh	L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with a	2, 5 Il four sets of data)	22_L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR $_{\rm Flow}$):	0,61			[SFR/TFR]
CHECK OF ANALYZE	R CALIBRATION		[1.	2=off; 3=on, 4=vent]
Analyze		With	in range	Pot settings
span 906	907		to 935	215
mid 414	416		to 437	none
zero O	1		to +45	480
Dilution ratio (DR _{Span}):	0.61	^		[Span _{Diluted} / Span]
Dilution ratio difference	e: <u> </u>	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	5:08			
Comments:				
	(

Operator: Milota		E	Event (kiln c	harge): <u>Hampton</u> ≉
Time now: 9:43		F	Run (sample	e):9
AMBIENT DATA Airport pressure: 29.82	inHg	Laborat	ory tempera	ature:23 °C
END TIME: 9:46 pm		•		
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Dilluted}	562			562
Sample flow rate (SFR) :	1,602	_ L/min	[1= on	n, 2, 3 = off, 4=meter]
Read dilution meter:		_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
	0,621			[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		<u>[1.</u>	2=off; 3=on, 4=vent]
Analyzer	Computer	Withi	n range	Pot settings
span 90 9	909	875	to 935	214
mid 4/8	418	379	to 437	none
zero	0	-45	to +45	480
Dilution ratio (DR _{Span}):	0618			[Span _{Diluted} / Span]
Dilution ratio difference:	66 0,64	t% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	9:50			
Comments:				

BACKGROU	IND INFORMA	TION			
Dry-bulb temperature: <a>\Q2			Event (kiln charge): Hampton 4 2		
Wet-bulb ten	nperature: <u>6</u> 6		Run (sample):		
Absolute hur	midity:		Operator: Milot	a	
	sture:		Date: 3-25		
Target Dilution	on Ratio (TDR)	: 0.6	Time now:5	:03	
AMBIENT D	ATA				
Altimeter set	ting: $\frac{29}{1}$	76_ inHg	Laboratory tempe	rature: 23_ °C	
ANALYZER	CALIBRATION	I	[1	2 = off; 3=on; 4=vent l	
	nalyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	1	does not apply	480	
span	905 (1527)	906	does not apply	214	
mid	415	414	379 to 437	none	
CET DU LITI	ON EL OW BEE	ODE DUN			
	ON FLOW BEF				
Total flow ra	te (TFR):	2,5/8	L/min [[1, 2, 3 = off; 4=meter]	
Target dilution	on flow rate (TD	FR)	L/min	[TFR x (1 - DR)]	
sampl	le flow rate (TS	FR)	_ L/min	[TFR x DR]	
Set and read	d dilution meter	: 2	_ scfh	[scfh = L/min * 2.12]	
Sample flow	rate (SFR):	1,578	_L/min [1 = o	n; 2, 3 = off; 4=meter]	
CHECK DILUTION FLOW BEFORE RUN		BEFORE RUN		1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR] 10	Difference, % 00*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Diluted}	559	0,618	0,612	0,9	
START TIM	E: 5:13	_ ['	1, 2, 5 = on; 3, 4	= off; tank valves off]	

[60 < computer reading < 750]

ANALYZER RANGE:

BACKGRO	OUND INFORMA	TION			
Dry-bulb te	emperature:	`	Event (kiln charge): <u>Hampton</u> ∕2		
Wet-bulb to	emperature:	6	Run (sample): <i>[D</i>		
	umidity:		Operator: Milota		
Percent mo	oisture:		Date: 3-25-	04	
Target Dilu	ution Ratio (TDR)	: 0.6	Time now : _ 9:4	-3	
ABBIELIT	DATA				
Altimeter setting: 29.82 inHg Laboratory temperature: 23 °C				02	
Altimeter s	etting: 29.8	<u>/</u> inHg	Laboratory tempera	ature: <u>∠</u> > °C	
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=ver				2 = off: 3=on: 4=vent 1	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	0	does not apply	480	
span	905 (1527)	905	does not apply	211	
mid	43	414	379 to 437	none	
Contractive of the Contractive o					
SET DILU	TION FLOW BEI	ORE RUN			
Total flow	rate (TFR):	2515	_ L/min [1	1, 2, 3 = off; 4=meter]	
Target dilut	tion flow rate (TD	FR)	_ L/min	[TFR x (1 - DR)]	
sam	ple flow rate (TS	FR)	_L/min	[TFR x DR]	
Set and rea	ad dilution meter	: 2	_ scfh	[scfh = L/min * 2.12]	
Sample flo	w rate (SFR):	1,594	_ L/min [1 = on	; 2, 3 = off; 4=meter]	
CHECK DI	LUTION FLOW	BEFORE RUN	[1,	3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR] 100	Difference, % *(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dilut}	ted 97 553	0611	0,619	[,13	
START TII	ME: 9:54	Γ1	1. 2. 5 = on: 3. 4 =	off: tank valves off 1	

[60 < computer reading < 750]

ANALYZER RANGE:

Operator:		and the same of th	E	Event (kiln c	harge): <u>Hampton≉</u> ?
Time now: _5:39	a 3-6	26-04	F	Run (sample	9):
AMBIENT DATA	Cho				
Airport pressure:	1000	_ inHg	Laborat	ory tempera	ıture:_ <u>23</u> °C
	29,93				
END TIME:	39	-			
CHECK DILUTION	FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer	•		Computer
Span _{Diluted}	******************************	556			555
Sample flow rate (S		1,586	L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter	: <u>2</u>	scfh	L/min		[L/min = scfh*0.472]
Total flow rate (TFR (attach print out with	l): n all four	sets of data)	L/min	, [1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flov}	_v):	0.615			[SFR/TFR]
CHECK OF ANALY	ZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
Analy	/zer	Computer	With	in range	Pot settings
span 90	7	908	875	to 935	211
mid 416	5	46	379	to 437	none
zero			-45	to +45	480
Dilution ratio (DR _{Spa}	_n):	0.614	-		[Span _{Diluted} / Span]
Dilution ratio differe	nce:	0.16	_% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:		5:48	-		
Comments:					
amente en dy colonie e que principa de consequencia de consequ					

BACKGROUN	D INFORMA	TION				
Dry-bulb tempe	erature:8	12	Event (kiln charge): <u>Hampton 1</u>		
Wet-bulb temp			Run (sample):	12		
Absolute humid			Operator: Milota	<u>a</u>		
Percent moistu	re:	and the same and t	Date: 3-3	26-04		
Target Dilution	Ratio (TDR)	: _ 0,6	Time now :	5:40		
AMBIENT DAT	TA.					
Altimeter settin	g: 29,6	13 inHg	Laboratory tempe	rature: 23 °C		
ANALYZER CA	ALIBRATION		[1,	2 = off; 3=on; 4=vent]		
Ana	alyzer, ppm	Computer	Within range	Pot settings		
zero	(0)	ĺ	does not apply	480		
span	105 (1527)	906	does not apply	408		
mid	414	416	379 to 437	none		
SET DILUTION	I FLOW BEF	ORE RUN				
Total flow rate		2,571	L/min [1, 2, 3 = off; 4=meter]		
Target			-			
	flow rate (TD	2	L/min	[TFR x (1 - DR)]		
	flow rate (TSI		_ L/min	[TFR x DR]		
Set and read dilution meter: Sample flow rate (SFR): Set and read dilution meter: Soft scfh = L/min * 2.12						
Sample flow rate (SFR): L/min [1 = on; 2, 3 = off; 4=meter]						
CHECK DILUT	ION FLOW			. 3=on; 2=off; 4=vent]		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 100	Difference, % D*(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span _{Diluted}	555	0,613	0,616	0,5		
START TIME:	5:53	_ [1	1, 2, 5 = on; 3, 4 =	off; tank valves off]		

[60 < computer reading < 750]

ANALYZER RANGE: 2

	MiloTa		E	Event (kiln c	harge): <u>Hampton 1</u>			
Time now:	9:02		F	Run (sample):			
AMBIENT		, ₂ inHg	Laborat	ory tempera	iture:22°C			
END TIME	9:02	-						
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]			
		Analyzer			Computer			
S	pan _{Diluted}	556			5/			
	w rate (SFR) :		_ L/min		, 2, 3 = off, 4=meter]			
Read diluti	on meter: 🗘	scfh	_ L/min		[L/min = scfh*0.472]			
Total flow r (attach prin	rate (TFR): nt out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]			
Dilution rat		0,614	-		[SFR/TFR]			
CHECK OF	ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]			
	Analyzer	Computer	With	in range	Pot settings			
span	904	904	875	to 935	208			
mid	414	416	379	to 437	none			
zero	0	0.5	-45	to +45	480			
Dilution rat	io (DR _{Span}):	0.615			[Span _{Diluted} / Span]			
Dilution rat	Dilution ratio difference:							
End time fo	or check:	9:05						
Comments								
			····,···					

BACKGROUN	ND INFORMA	TION				
Dry-bulb temp	erature:	2	Event (kiln charge	e): <u>Hampton \$</u>		
Wet-bulb temp	oerature:	16	Run (sample):			
Absolute humi			Operator: Milot	The second secon		
Percent moist	ure:		Date: 3-3			
Target Dilution	n Ratio (TDR)	: 0,6	Time now:	:06		
		,				
AMBIENT DA	TA					
Altimeter setti	$ng: 29^\circ$	6_inHg	Laboratory tempe	erature: 22 °C		
ANALYZER C	ALIBRATION	N	[1	2 = off; 3=on; 4=vent]		
An	alyzer, ppm	Computer	Within range	Pot settings		
zero	(0)	0,5	does not apply	480		
span	905 (1527)	90 Z	does not apply	20%		
mid	44	414	379 to 437	none		
SET DILUTIO	N FLOW BE	ORE RUN				
Total flow rate	(TFR):	2,56/	_L/min [1, 2, 3 = off; 4=meter]		
Target dilution	flow rate (TD	FR)	L/min	[TFR x (1 - DR)]		
	flow rate (TS		L/min	[TFR x DR]		
Set and read dilution meter: 2 scfh [scfh = L/min * 2.12]						
Sample flow rate (SFR): $\frac{1.586}{1.586}$ L/min [1 = on; 2, 3 = off; 4=meter]						
•	, ,	BEFORE RUN	-			
OTTEGR DIEG	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow	1, 3=on; 2=off; 4=vent] Difference, % 0*(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span _{Diluted}	555		0,613			
START TIME:	9:12	[1	1, 2, 5 = on: 3, 4 =	off; tank valves off]		

[60 < computer reading < 750]

ANALYZER RANGE: ______

Operator: Milita			17.1	harge): <u>Hampton #2</u>
Time now:	***************************************	F	Run (sample):
AMBIENT DATA			3	
Airport pressure: 2993	inHg	Laborat	ory tempera	ture:21°C
END TIME: 12:18				
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer		(Computer
Span _{Diluted}	552	_		553
	1,576	_ L/min		, 2, 3 = off, 4=meter]
Read dilution meter:	scfh	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	3,560 sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
	0.615			[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	With	in range	Pot settings
span 903	906	875	to 935	206
mid 413	413	379	to 437	none
zero 🔿	\triangle	-45	to +45	480
Dilution ratio (DR _{Span}):	0.611			[Span _{Diluted} / Span]
Dilution ratio difference:	0.65	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	12:25	. "		
Comments:				

BACKGROUN	ID INFORMA	TION			
Dry-bulb temp	erature:	2	Event (kiln char	rge):	Hampton 1
Wet-bulb temp	erature:k	6	Run (sample):		10
Absolute humi	dity:		Operator: Mil	lota	
Percent moistu	ıre:	The state of the s	Date: 3-2	6-	04
Target Dilution	Ratio (TDR)	: <u>0,6</u>	Time now:	26	25
AMBIENT DAT	ГА		Maradan ng mangan kanangan ka	***	
Altimeter setting	$\frac{2993}{}$	inHg_	Laboratory tem	pera	ture: 🔰 / °C
ANALYZER C	ALIBRATION	1		1, 2	= off; 3=on; 4=vent]
Ana	alyzer, ppm	Computer	Within range		Pot settings
zero ((0)	0	does not appl	у	480
span 9	05 (1527)	每905	does not appl	у	202
mid &	44	414	379 to 437		none
SET DILUTION	N FLOW BEF	ORE RUN			
Total flow rate	(TFR):	2,551	L/min	[1	, 2, 3 = off; 4=meter]
Target dilution	flow rate (TD	FR)	_ L/min		[TFR x (1 - DR)]
sample	flow rate (TS		_L/min		[TFR x DR]
Set and read d	ilution meter	2	_ scfh	[scfh = L/min * 2.12]
Sample flow ra	te (SFR):	1,590	_ L/min [1 =	on;	2, 3 = off; 4=meter]
CHECK DILUT	ION FLOW			[1,	3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	100*(Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}	551	0620	0,623		0,48
START TIME:	12:30	_ [1	, 2, 5 = on; 3, 4	1 = c	off; tank valves off]

[60 < computer reading < 750]

ANALYZER RANGE: 2

Operator: _	Milora		E	Event (kiln c	harge): <u>Hampton ቾ</u> ⊋
Time now:	5:00	office and the second second	F	Run (sample	e):
AMBIENT I	DATA ssure: 29,91	inHg	Laborat	ory tempera	nture: 2/°C
END TIME:	5:00	-			
CHECK DI	LUTION FLOW A				3=on; 2=off; 4=vent]
-		Analyzer		55	Computer
S	pan _{Diluted}	550			73
Sample flov	w rate (SFR) :	1,589	_ L/min	[1= on	, 2, 3 = off, 4=meter]
		scfh			[L/min = scfh*0.472]
Total flow r (attach prin	ate (TFR): it out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rati		0,69.			[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	900	901	875	to 935	
mid	411	412	379	to 437	none
zero	0	1	-45	to +45	
Dilution rati	io (DR _{Span}):	0,613			[Span _{Diluted} / Span]
Dilution rati	io difference:	0.98	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	or check:	5:05			
Comments:					
			· · · · · · · · · · · · · · · · · · ·		

BACKGR	OUND INFORMA	TION					
Dry-bulb to	emperature:	32	Event (kiln cha	rge)	: Hampton 🖈 🕽		
Wet-bulb t	temperature:	66	Run (sample):	1	4		
Absolute h	numidity:		Operator: M	ilota	,		
Percent m	oisture:	The state of the s	Date: 3-26	04	<i>f</i>		
Target Dile	ution Ratio (TDR)	1: 0,6	Time now: 52	00			
AMBIENT		A					
Altimeter s	setting: 29	$\mathfrak{OS}_{}$ inHg	Laboratory tem	pera	ature: 21 °C		
ANALVZE	R CALIBRATION			r 4 - 0) - off 2-on 4-vont 1		
ANALIZE	Analyzer, ppm	Computer	Within range	_	2 = off; 3=on; 4=vent] Pot settings		
zero	(0)		does not app		480		
span	905 (1527)	905	does not app		212		
mid	414	415	379 to 437		none		
SET DILU	TION FLOW BEI	ORE RUN					
Total flow	rate (TFR):	2,851	_ L/min	[1	, 2, 3 = off; 4=meter]		
Target	tion flow note (TD	(ED)	1 Annin		LTED (4 DD) 1		
	tion flow rate (TD		_ L/min		[TFR x (1 - DR)]		
	nple flow rate (TS		L/min		[TFR x DR]		
	ad dilution meter	1561	_ scfh		[scfh = L/min * 2.12]		
	ow rate (SFR):		_ L/min [1 =		2, 3 = off; 4=meter]		
CHECK D	ILUTION FLOW		DP	[1,	3=on; 2=off; 4=vent] Difference, %		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	100*	(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span	ited 552	0,611	0,612		0.16		
	500						
START TI	ME:	[1	1, 2, 5 = on; 3,	4 = (off; tank valves off]		
ANALYZE	R RANGE:		[60 < co	omp	uter reading < 750]		

Operator: _	Milora		Event (kiln o	charge): <u>Hampton # 2</u>
Time now:	9.47p		Run (sample	e): <u>14</u>
AMBIENT Airport pres	DATA ssure: 29,90	_ inHg	Laboratory tempera	ature: 🔰 °C
END TIME	: 10:00		ve ighed se starte	1 boards
CHECK DI	LUTION FLOW			3=on; 2=off; 4=vent]
S	pan _{Dilluted}	Analyzer 55 /		Computer 552
	w rate (SFR) :	1,569	L/min [1= or	n, 2, 3 = off, 4=meter]
	on meter:			[L/min = scfh*0.472]
Total flow r	rate (TFR): nt out with all fou	2,564 r sets of data)	L/min [′	1, 2, 3 = off; 4=meter]
Dilution rat		0.612)	[SFR/TFR]
CHECK OF	ANALYZER C	ALIBRATION	[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	Within range	Pot settings
span	905	906	875 to 935	212
mid	414	414	379 to 437	none
zero	D)	-45 to +45	480
Dilution rat	io (DR _{Span}):	0:609	1	[Span _{Diluted} / Span]
Dilution rat	io difference:	0,5	% [100*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	or check:	10:2		
Comments				

	.=	i	i											1			1			
		F/M	ml /min				I													
		Dilution					J	36		1	7.0	3	0	2.2	3,7	2.7	39	30		M
	Flows	Flow 3	SCFH	0	0	D	100	201	130	120	120	160	5%	27	.0	0	0	0)	0
		Flow 2	-	0	0	0	30	26	I	ナ	3	S	4	39	2	17	0	<	0	0
		Flow 1	L/min	0	p	200	C41	166	14	52	ß	27	25	88	%	35	80	63	200	100
ä		Chiller	ပွ)		1										1	\	
		Analzr	ပွ	J	1													1		
2		Line	ĥ	223	233	273	233	273	233	773	33	373	273	273	273	23	278	273	273	223
8	Se	q		-			-													
Time	Temperatures	Wet-bulb	၁့	1	31	19	19	62	63	59	20	29	63	69	20	B	TH	74	22	71
Date -04	Te	Dry-bulb	၁့	l	53	1/	1/2	2	73	77	18		24	88	98	35	101	10)	101	102
3-29-04		Valve	ပွ	148	145	145	14S	Shy	341	145	18	145	145	74S	3	Sh	5	14	145	2
Start: (End:		Вох	ပွ	126	185	125	125	125	125	135	(2)	125	125	138	125	1251	135	135		1251
	Run		#	1	. `	,			R	7	7	3	3	\sim	8	4	N	9	9	7
es l		>	-		>	2	7	>		7	1	J.	10			0			~1	
n Affiliat	Run	time	hrs	App	0;15	1.30	11.34	2:18	27/9	4:35	F3	7:0y	7:03	80	8.0	17:30	20105	20:22	TOOC	2336
Charge: 3 Hampton Affiliates Page:)	Clock	time		9:13	9:30	10.44	24,0	11:33	13	2-	2/36	721	43	5,16	SiD	46	518A	SIA	7:36	8:50
					<	7	->	4	>		(<		400	0		す		-	أحض
						7	00/	100	021		;	31	12	<	\rightarrow	1	3-36-04			
								_				Sen Elite					No. Com			

AT 6:00 Flow began to devene

Charge: 3	60				Date		Time						×				1
Hamptor	Hampton Affiliates		Start:	t: 3-29-04	-04	-											
Page:	7		End:														
Clock	Run	LE	Run			H	Temperatures				-						-
time		>	Box	x Valve	e Dry-bul	2		7	Line Ar	Analzr Chi	Chiller Fl	Flow 1	Flow 2	Flow 3	Dilution	E/M	" ٿ
	hrs		J. #	ပ္		-	ပွ		ů.			1	L/min	SCFH		mL/min	1
10:36	25.18	-	7 125	144 SI	103	0.0	20	C	8	/)	3	0	0	3.0		
138	2833		8 121	51145		~ ^	. 63	18	273		7	7	0	C	0		
8 3	21153	-	9 13	3/1 3	5 102		89	68	273)		A		C	1~		
4.4	36:29	_	6 124	1 14	5 102		67	5	223			100	0	0	23		1
						-						4				\ \ !	
												T					I.
						-											
												T					1
		-				-		-									
		\vdash															1
						\vdash											1
																	l
																	1
																	1
7		\dashv	-	,													ı
																Management of the Party of the	Management of the Parket

BACKGROUND INFORMATION	
Dry-bulb temperature: 155-196	Е
Wet-bulb temperature: 120-150	R

Absolute humidity: ____ Percent moisture: 11-12//

Target Dilution Ratio (TDR):

vent (kiln charge): Hampton 3

lun (sample):

Operator: Milota

Date: 3-29-04

Time now: 9:08

AMBIENT DATA

Altimeter setting: 27,86 inHg

Laboratory temperature: 23 °C

ANALYZE	R CALIBRATIO	<u> </u>	[1,2	? = off; 3=on; 4=vent]
	Analyzer, ppm	Computer	Within range	Pot settings
zero	(0)		does not apply	4-82
span	905 (1527)		does not apply	211
mid	415	~	379 to 437	none

SET DILUTION FLOW BEFORE RUN

SELECTION LEGIT OIL	NON	
Total flow rate (TFR):	L/min	[1, 2, 3 = off; 4=meter]
Target dilution flow rate (TDFR)	L/min	[TFR x (1 - DR)]
sample flow rate (TSFR)	L/min	[TFR x DR]
Set and read dilution meter:	scfh	[scfh = L/min * 2.12]
Sample flow rate (SFR):	L/min	[1 = on; 2, 3 = off; 4=meter]
CHECK DILLITION ELOW BEEC	DE DUN	

CHECK DILUT	[1, 3=on: 2=off: 4=vent]			
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}				

[1, 2, 5 = on; 3, 4 = off; tank valves off]

START TIME: 9:15

ANALYZER RANGE: 2

Operator: _	Milota		E	Event (kiln c	harge): <u>Hampton 3</u>
Time now:	9F98 11	137	Run (şample):		
AMBIENT I					
Airport pres	ssure: <u>29.85</u>	inHg	Laborat	ory tempera	ature: <u>23</u> °C
					*
END TIME: 11:38					
CHECK DI	UTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
S	oan _{Diluted}				
Sample flov	v rate (SFR) :		_ L/min	[1= or	, 2, 3 = off, 4=meter]
Read dilution	on meter:	_ scfh	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): L/min [1, 2, 3 = off; 4=meter] (attach print out with all four sets of data)					
Dilution rati	o (DR _{Flow}):				[SFR/TFR]
CHECK OF	ANALYZER C	ALIBRATION		[.1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	905	906	875	to 935	211
mid	414	413		to 437	none
zero	01	1	-45	to +45	482
Dilution rati	o (DR _{Span}):	***************************************			[Span _{Diluted} / Span]
Dilution rati	o difference:		% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo					
Comments:	3-29-	04 8:54 L	eah Ch	lech 19.2	("Hg -) 18.6 Hg
					@9:02

BACKGRO	OUND INFORMA	TION				
Dry-bulb te	emperature:	70+	Event (kiln charge): Hampton 3			
Wet-bulb to	emperature:	60+	Run (sample):			
Absolute h	umidity:		Operator: M	ilota		
Percent mo	Percent moisture:			29-	04	
Target Dilu	ition Ratio (TDR): <u>0,8</u> 5	Time now :	1:3	8	
AMBIENT	AMBIENT DATA					
Altimeter setting: 29,85 inHg Laboratory temperature:				ature:°C		
ANALYZEI	ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=vent]					
	Analyzer, ppm	Computer	Within range		Pot settings	
zero	(0)		does not apply		482	
span	905 (1527)	906	does not apply		211	
mid	414	413	379 to 437		none	
SET DILUT	ION FLOW BEF	ORE RUN				
Total flow r	ate (TFR):	2,582	_ L/min	[1	, 2, 3 = off; 4=meter]	
Target diluti	ion flow rate (TD	FR) 1,291	L/min		[TFR x (1 - DR)]	
sam	ple flow rate (TS	FR) 1,291	_ L/min		[TFR x DR]	
Set and rea	d dilution meter:		_scfh	. 1	scfh = L/min * 2.12]	
Sample flov	v rate (SFR):	1,316	_ L/min	on;	2, 3 = off; 4=meter]	
CHECK DIL	UTION FLOW			[1.	3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	100*(Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dilute}	d 462	0,511	0510		0,2	
START TIM	START TIME: [1, 2, 5 = on; 3, 4 = off; tank valves off]					
ANALYZER	ANALYZER RANGE: [60 < computer reading < 750]					

Operator: _	Milota		E	Event (kiln c	harge): <u>Hampton 3</u>	
Time now:	2,35	-	Run (sample):			
AMBIENT I	DATA					
Airport pres	ssure: 29,80	inHg	Labora	tory tempera	ature: 30 °C	
END TIME:	2:37 p	,				
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]	
		Analyzer			Computer	
S _I	oan _{Diluted}	45	2	1	453	
	v rate (SFR) :	1,324	_ L/min	[1= on	n, 2, 3 = off, 4=meter]	
Read dilution meter: 17+ scfh L/min [L/min = scf			[L/min = scfh*0.472]			
Total flow ra (attach prin	ate (TFR): t out with all four	sets of data)	_L/min	[1	, 2, 3 = off; 4=meter]	
Dilution rati	o (DR _{Flow}):	0,507	_		[SFR/TFR]	
CHECK OF	ANALYZER CAI	LIBRATION		[1.	2=off; 3=on, 4=vent]	
	Analyzer	Computer	With	in range	Pot settings	
span	901	901		to 935		
mid	411	412	*******************************	to 437	none	
zero	0	Ö		to +45	none	
Dilution rati	o (DR _{Span}):	0,502			[Span _{Diluted} / Span]	
Dilution rati	Dilution ratio difference: (// % [100*(Abs(DR _{Span} - DR _{Flow}))/DR _{Flow}]					
End time fo	r check:	2;43				
Comments:						

BACKGR	OUND INFORMA	ATION			
Dry-bulb t	emperature:	\rightarrow	Event (kiln charge): <u>Hampton 3</u>		
Wet-bulb	temperature:6	4->	Run (sample):		
Absolute humidity:			Operator: Milot	a	
Percent m	oisture:		Date: 3-2	7-04	
Target Dil	ution Ratio (TDR): 0,5	Time now :	:38	
AMBIENT DATA					
Altimeter s	setting: 29	<u>∕{</u> inHg	Laboratory tempe	rature:3/°C	
ANALYZE	R CALIBRATIO	N.		2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	0	does not apply	482	
span	905 (1527)	904	does not apply	213	
mid	413	414	379 to 437	none	
SET DILU	TION FLOW BEI	ORE RUN			
Total flow	rate (TFR):	2,628	_L/min [1, 2, 3 = off; 4=meter]	
Target dilut	tion flow rate (TD	FR)	L/min	[TFR x (1 - DR)]	
sam	ple flow rate (TS	FR)	L/min	[TFR x DR]	
Set and rea	ad dilution meter:	2,7	_ scfh	[scfh = L/min * 2.12]	
Sample flo	w rate (SFR):	1.324		n; 2, 3 = off; 4=meter]	
CHECK DI	LUTION FLOW	BEFORE RUN	[1	. 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR] 100	Difference, % D*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dilut}	ed 454	0,502	0,504	0.4	
START TI	ME: 2:47	_ [1	, 2, 5 = on; 3, 4 =	off: tank valves off 1	

[60 < computer reading < 750]

ANALYZER RANGE:

Operator: _	Milota	Militaria de la companio della compa	E	Event (kiln c	harge): <u>Hampton 3</u>
Time now:	5:16	transfer my continues	f	Run (sample	e): <u>3</u>
AMBIENT I	DATA ssure: 2993	inHg	Labora	tory tempera	nture:2_6_°C
END TIME:	5:18				
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
S	pan _{Diluted}	461		4	60
	w rate (SFR) :	1,336		[1= on	, 2, 3 = off, 4=meter]
Read dilution	scfh	_ L/min		[L/min = scfh*0.472]	
Total flow r	ate (TFR): t out with all four	~ 110		[1	, 2, 3 = off; 4=meter]
Dilution rati	io (DR _{Flow}):	0,510			[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		[.1.	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	906	907	875	to 935	213
mid	41 \$ 5	416	379	to 437	none
zero	0	/	-45	to +45	482
Dilution rati	o (DR _{Span}):	0.501			[Span _{Diluted} / Span]
Dilution rati	o difference:	0,2	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	r check:	5:122			
Comments:					

Operator:Milota		Event (kiln charge): Hampton 3			
Time now:	The state of the s	F	Run (sample	e):	
AMBIENT DATA Airport pressure: 3020	inHg	Laborat	tory tempera	ature:°C	
END TIME: 6:55a					
CHECK DILUTION FLOW A			[1,	3=on; 2=off; 4=vent]	
	Analyzer			Computer	
Span _{Diluted}	47				
Sample flow rate (SFR) :	1,408	_ L/min	[1= or	o, 2, 3 = off, 4=meter]	
Read dilution meter: 27	scfh	_ L/min		[L/min = scfh*0.472]	
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]	
Dilution ratio (DR _{Flow}):	0.546			[SFR/TFR]	
CHECK OF ANALYZER CAL	IBRATION		[.1.	2=off; 3=on, 4=vent]	
Analyzer	Computer	Withi	n range	Pot settings	
span 905		875	to 935	208	
mid LH4		379	to 437	none	
zero		-45	to +45	482	
Dilution ratio (DR _{Span}):	0,543			[Span _{Diluted} / Span]	
Dilution ratio difference:	0.5	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]	
End time for check:	7:03	ž			
Comments:				×.	

BACKGROUN	ID INFORMA	TION			
Dry-bulb temp	erature:	Event (kiln cha	Event (kiln charge): <u>Hampton 3</u>		
Wet-bulb temp	perature:	-	Run (sample):		
Absolute humidity:			Operator: Mi	ilota	
Percent moiste	ure:		Date: 3-3	30-04	
Target Dilution	n Ratio (TDR)	: <u>0,55</u>	Time now :		
AMBIENT DATA					
Altimeter settir	ng: <u>30</u>	Laboratory tem	nperature: 22 °C		
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=vent]					
	alyzer, ppm	Computer	Within range		
zero	(0)	(does not app	ly	
span (705 (1527)	906	does not appl	ly	
mid 2	f14	416	379 to 437	none	
SET DILUTIO	N FLOW BE	ORE RUN			
Total flow rate	(TFR):	2,594	_ L/min	[1, 2, 3 = off; 4=meter	
Target dilution	flow rate (TD	FR) 1,19	_ L/min	[TFR x (1 - DR)	
sample	flow rate (TS	FR) <u>1,4</u>	_L/min	[TFR x DR	
Set and read d	lilution meter	2.53	_scfh		
Sample flow ra	ite (SFR):	1,390	_L/min [1 =	on; 2, 3 = off; 4=meter]	
CHECK DILUTION FLOW BEFORE RUN			T	[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
	1 1	15	3 1		
Span _{Diluted}	490	0,541	0,536	1.03	

[60 < computer reading < 750]

ANALYZER RANGE: ______

Operator:Milota		Event (kiln charge): Hampton 3			
Time now: 9:40	The state of the s	Run (sample):			
AMBIENT DATA Airport pressure:	inHg	Laboratory temper	ature: ℃		
END TIME: 9:45					
CHECK DILUTION FLOW A		ı	3=on; 2=off; 4=vent]		
Chan	Analyzer	. , ,	Computer		
Span _{Diluted}	1000	1 4	-75		
Sample flow rate (SFR):	1,001	L/min [1= oi	n, 2, 3 = off, 4=meter]		
Read dilution meter: 375		L/min	[L/min = scfh*0.472]		
Total flow rate (TFR): (attach print out with all four	sets of data)	585 L/min	1, 2, 3 = off; 4=meter]		
Dilution ratio (DR _{Flow}):	0499	<u>}</u>	[SFR/TFR]		
CHECK OF ANALYZER CAL	LIBRATION	[1	2=off; 3=on, 4=vent]		
Analyzer	Computer	Within range	Pot settings		
span 905	905	875 to 935	208		
mid 415	416	379 to 437	none		
zero		-45 to +45	482		
Dilution ratio (DR _{Span}):	0,493		[Span _{Diluted} / Span]		
Dilution ratio difference:	1,2	% [100*(Abs(DR	Span - DR Flow))/DR Flow]		
End time for check:	10:16	P			
Comments:		V			

BACKGROUND INFORMATION					
Dry-bulb temp		Event (kiln charge): Hampton 3			
Wet-bulb temperature:68 ↓			Run (sample):		
Absolute humidity:			Operator: M		
Percent moist	ure:		Date: 3	-30	0-04
Target Dilution	n Ratio (TDR)	: 0,5	Time now: 5		
AMBIENT DA					
Altimeter setting	ng: 30	<u>掲</u> inHg	Laboratory tem	npera	ature: <u></u> ∂2 °C
ANALYZER CALIBRATION [1, 2 = off: 3=on: 4=vent]					
	alyzer, ppm	Computer	1	-	2 = off; 3=on; 4=vent]
	^	Computer	Within range		Pot settings
zero	(0)		does not apply		482
span	905(1527)	906	does not apply		208
mid	415	414	379 to 437		none
		,			
SET DILUTIO		~~		·	
Total flow rate	(TFR):	25/3	_ L/min	[1	, 2, 3 = off; 4=meter]
Target dilution	flow rate (TD	FR)	L/min		[TFR x (1 - DR)]
sample	flow rate (TS	FR)	_L/min		[TFR x DR]
Set and read of	dilution meter:	2.7	_ scfh		[scfh = L/min * 2.12]
Sample flow ra	ate (SFR):	1,269	_ L/min [1 =	on;	2, 3 = off; 4=meter]
CHECK DILU	TION FLOW	BEFORE RUN		[1.	3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}	448	0,495	0,493		0,3%
START TIME:	5/14	f [1	1, 2, 5 = on; 3,	4 = 0	off; tank valves off]
ANALYZER R	ANALYZER RANGE: [60 < computer reading < 750]				

Operator:Milota	- Contraction of the Contraction	1	Event (kiln o	charge): <u>Hampton 3</u>		
Time now:		6/0				
AMBIENT DATA						
Airport pressure: 30,18	inHg	Labora	tory tempera	ature: <u> 2 ≥ </u> °C		
END TIME:						
CHECK DILUTION FLOW A	FTER RUN	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1,	3=on; 2=off; 4=vent]		
	Analyzer			Computer		
Span _{Diluted}	446		44			
Sample flow rate (SFR) :	1,267	_ L/min	[1= or	i, 2, 3 = off, 4=meter]		
Read dilution meter: 2.7				[L/min = scfh*0.472]		
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]		
Dilution ratio (DR _{Flow}):	0,494	<i>}</i>		[SFR/TFR]		
CHECK OF ANALYZER CAI	IBRATION		[.1,	2=off; 3=on, 4=vent]		
Analyzer	Computer	Withi	n range	Pot settings		
span 12904	903		to 935			
mid 413	413		to 437	none		
zero O	1	-45	to +45			
Dilution ratio (DR _{Span}):	0,493			[Span _{Diluted} / Span]		
Dilution ratio difference:	0,04	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]		
End time for check:	5:12					
Comments:						

BACKGROUN	D INFORMA	TION				
Dry-bulb temperature:			Event (kiln charge): <u>Hampton 3</u>			
Wet-bulb temp	erature:		Run (sample):	Run (sample):		
Absolute humid	dity:		Operator:M			
Percent moistu	ıre:		Date:			
Target Dilution	Ratio (TDR)	:	Time now :			
AMBIENT DAT	ΓΑ					
Altimeter settin	g: <u>30</u>	13 inHg	Laboratory tem	pera	nture: 23 °C	
ANALYZER C	ALIBRATION			1, 2	= off; 3=on; 4=vent]	
Ana	alyzer, ppm	Computer	Within range	9	Pot settings	
zero	(0)	0	does not app	ly	482	
span	905(1527)	906	does not app	ly	206	
mid (412	413	379 to 437		none	
SET DILUTION	I FI OW BEE	ORE RUN				
Total flow rate	,	2,578	_ L/min	[1	, 2, 3 = off; 4=meter]	
Target dilution t	flow rate (TD	FR)	_ L/min		[TFR x (1 - DR)]	
sample t	flow rate (TS	FR)	L/min			
Set and read d	ilution meter:	2,7	_scfh		[scfh = L/min * 2.12]	
Sample flow ra	te (SFR):	1,291	_L/min [1 =	on;	2, 3 = off; 4=meter]	
CHECK DILUT	ION FLOW	BEFORE RUN	<u></u>	[1.	3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Diluted}	452	0,499	0,501			
START TIME:	30M	r 4	1 2 5 = on: 3	1 = -	off: tank valvas off 1	

[60 < computer reading < 750]

ANALYZER RANGE: _

Operator:	Milota	According to the second	1	Event (kiln o	charge): <u>Hampton 3</u>	
Time now:		etteritoris de qualitaris proprio de deproprios	Run (sample):			
AMBIENT	DATA		i Para meningan kalabangan sangan kanan kanangan pa			
Airport pre	ssure:	inHg	Labora	tory temper	ature:°C	
END TIME						
CHECK DI	LUTION FLOW A	FTER RUN	-	[1,	3=on; 2=off; 4=vent]	
		Analyzer	•		Computer	
s	pan _{Diluted}	435		43	6	
Sample flo	w rate (SFR) :	1245	L/min	[1= or	n, 2, 3 = off, 4=meter]	
Read diluti	on meter: 28	scfh	_ L/min		[L/min = scfh*0.472]	
Total flow r (attach prin	rate (TFR): it out with all four	sets of data)	L/min	[1	1, 2, 3 = off; 4=meter]	
Dilution rat	io (DR _{Flow}):	0,48			[SFR/TFR]	
CHECK OF	ANALYZER CA	LIBRATION		[.1.	2=off; 3=on, 4=vent]	
	Analyzer	Computer	With	n range	Pot settings	
span	903	904		to 935	205	
mid	413	414		to 437	none	
zero	0			to +45	481	
Dilution rati	io (DR _{Span}):	048			[Span _{Diluted} / Span]	
Dilution rati	io difference:	O	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]	
End time fo	r check:	2:57				
Comments:						

BACKGROUN	D INFORMA	TION			
Dry-bulb temperature:			Event (kiln charge): Hampton 3		
Wet-bulb temp	100		Run (sample):	/	\sim
Absolute humid	dity:		Operator: Mi	ilota	
Percent moistu	ıre:		Date:3	-3	0-04
Target Dilution	Ratio (TDR)	:0,5	Time now :	11/	45
AMBIENT DAT	ΓΑ		*		
Altimeter settin	g: <u>30</u>	<u>/</u> 3 inHg	Laboratory tem	pera	ture: 23 °C
ANALYZĘR C	ALIBRATION			[1, 2	= off; 3=on; 4=vent]
Ana	alyzer, ppm	Computer	Within range	Э	Pot settings
zero	(0)	0,5	does not app	ly	281
span 9	05 (1527)	906	does not app	ly	205
mid L	15	415	379 to 437		none
SET DILUTION	I FLOW BEF	ORE RUN			
Total flow rate	(TFR):	3,565	_ L/min	[1	, 2, 3 = off; 4=meter]
Target dilution t	flow rate (TD	FR) <u>1,289</u>	_ L/min		[TFR x (1 - DR)]
sample t	flow rate (TS	FR)	_L/min	*	
Set and read d	ilution meter:	2.7	· -		scfh = L/min * 2.12]
Sample flow ra	te (SFR):	1,255	_ L/min		2, 3 = off; 4=meter]
CHECK DILUTION FLOW BEFORE RUN				[1.	3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*(Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}	443	049	0.49		6
TART TIME: 12:10 [1, 2, 5 = on; 3, 4 = off; tank valves off]					

[60 < computer reading < 750]

ANALYZER RANGE: ______

Operator: Milota			Event (kiln d	charge): <u>Hampton 3</u>
Time now:	Pro-Parameter (Page Anagara and Agara an	I	Run (sample	e):
AMBIENT DATA				
Airport pressure: 3013	_ inHg	Labora	tory tempera	ature:3 °C
END TIME: 11:48	-			
CHECK DILUTION FLOW	AFTER RUN 3	96	[1,	3=on; 2=off; 4=vent
	Analyze	r		Computer
Span _{Diluted}	400		4	01.399
Sample flow rate (SFR) :	1,135	L/min	[1= or	n, 2, 3 = off, 4=meter
Read dilution meter:	scfh	L/min		[L/min = scfh*0.472
Total flow rate (TFR): (attach print out with all four	sets of data)	L/min	[1	1, 2, 3 = off; 4=meter
Dilution ratio (DR _{Flow}):	0,44	3		[SFR/TFR
CHECK OF ANALYZER CA	LIBRATION	·	[1,	2=off; 3=on, 4=vent
Analyzer	Computer	With	n range	Pot settings
span 9//	911	875	to 935	210
mid 4/	412	379	to 437	none
zero	0,5	-45	to +45	282
Dilution ratio (DR _{Span}):	0,435	-		[Span _{Diluted} / Span]
Dilution ratio difference:	1,8	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for check:	12:05	•		
Comments:	SOM. O INNY	elali	o Lat	n (n This or
Computer had	not anne i	vitha	anali	2 la the state of
during Dost ch	oh !		0	y or provide

BACKGROUN	BACKGROUND INFORMATION						
Dry-bulb temperature:/ 🕽 🤇			Event (kiln charge): Hampton 3				
Wet-bulb tempe	-		Run (sample):	-			
Absolute humid	lity:	(3)	Operator: M				
Percent moistu	re:		Date:				
Target Dilution	Ratio (TDR)	: 0,45	Time now :				
	,	The state of the s	-				
AMBIENT DAT							
Altimeter setting	g: <u>30,0</u>	4 inHg	Laboratory tem	прега	ture: 23 °C		
ANALYZER CA				-	= off; 3=on; 4=vent]		
Ana	lyzer, ppm	Computer	Within range	е	Pot settings		
zero ((0)		does not app	ly	482		
span 9	0 > (1527)	906	does not app	ly	210		
mid C	H5	416	379 to 437		none		
SET DILUTION	FLOW BEF	ORE RUN					
Total flow rate (TFR):	2,5/0	_ L/min	[1	, 2, 3 = off; 4=meter]		
Target dilution f	low rate (TD	FR) 1,413	L/min		[TED :: (4 DD) 1		
	low rate (TS	1 1 [_ L/min		[TFR x (1 - DR)]		
Set and read di		3	-	,	[TFR x DR]		
		1,131	_ scfh		scfh = L/min * 2.12]		
Sample flow rat			_ L/min		2, 3 = off; 4=meter]		
CHECK DILUT	ON FLOW			[1.	3=on; 2=off; 4=vent]		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	100*(Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}		
Span _{Diluted}	400	0,44	0,44		0		
START TIME:	START TIME: 847 [1, 2, 5 = on; 3, 4 = off; tank valves off]						
ANALYZER RANGE: [60 < computer reading < 750]							

Operator:Milota		E	Event (kiln d	charge): <u>Hampton 3</u>
Time now: <u>8:30</u>	 	F	Run (sample	e): <u>6</u>
AMBIENT DATA				
Airport pressure: 3008	inHg	Laborat	ory tempera	ature: 23 °c
,				
END TIME: 8/40				
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Diluted}	333	342	34	3
Sample flow rate (SFR) :	0,975	_ L/min	[1= or	n, 2, 3 = off, 4=meter]
Read dilution meter: 33				[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four s	$\frac{2.57/}{\text{sets of data}}$	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0,379)		[SFR/TFR]
CHECK OF ANALYZER CAL	IBRATION		[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	Withi	n range	Pot settings
span 903	904	875	to 935	210
mid 43	414	379	to 437	none
zero) '	-45	to +45	482
Dilution ratio (DR _{Span}):	0.379			[Span _{Diluted} / Span]
Dilution ratio difference:		% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	8:44			
Comments:				

BACKGR	OUND INFORMA	TION			
Dry-bulb to	emperature:	- 0 C	105	Event (kiln charg	e): <u>Hampton 3</u>
Wet-bulb	temperature:	741	_	Run (sample):	6
Absolute h	numidity:0,3	7	***********	Operator: Milo	ta
Percent m	oisture: 3	7	Marinda	Date: 3-6	30-04
Target Dil	ution Ratio (TDR)	: <u>O,</u>	4	Date: 3-6	:196
AMBIENT	DATA				****
Altimeter	setting: 3001	i	nHg	Laboratory temper	erature: 25 °C
ANALYZE	R CALIBRATION	V		[1	, 2 = off; 3=on; 4=vent
	Analyzer, ppm	С	omputer	Within range	Pot settings
zero	(0)	1		does not apply	782
span	905 (1527)	(106	does not apply	210
mid	414	(413	379 to 437	none
SET DILU	TION FLOW BEF	ORE	RUN		
Total flow	rate (TFR):		2,589	_ L/min	[1, 2, 3 = off; 4=meter
Target dilu	tion flow rate (TD	FR)	1,0	_L/min /,5/	[TFR x (1 - DR)]
sample flow rate (TSFR)		_L/min	[TFR x DR]		
Set and read dilution meter:		_scfh 3,2	[scfh = L/min * 2.12]		
Sample flow rate (SFR):			$L/\min_{0} \frac{1}{100} [1 = c]$	[scfh = L/min * 2.12] on; 2, 3 = off; 4=meter]	
CHECK D	ILLITION EL OW	DEEO			1 2

1	CHECK DILUT	[1, 3=on; 2=off; 4=vent]			
		Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}
	Span _{Diluted}	352	0.389	0,388	0,2

START TIME: 5:34A

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE:

Operator:Milota		ı	Event (kiln d	charge): <u>Hampton 3</u>
Time now: 5:18 4	tarittiini faysin apana aadaa aana	I	Run (sampl	e): 5
AMBIENT DATA			·	
Airport pressure: 2001	inHg	Laborat	tory temper	ature: 25°C
END TIME: 5' 2/a 3-	30-04			34,
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
-	Analyzer	•		Computer
Span _{Diluted}	239		2	38
Sample flow rate (SFR) :	707	_nL/min	[1= or	n, 2, 3 = off, 4=meter]
Read dilution meter: 39	scfh	L/min		[L/min = scfh*0.472]
Read dilution meter: 39 Total flow rate (TFR): (attach print out with all four	2,588 sets of data)	L/min	[1	1, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0,2/	3		[SFR/TFR]
CHECK OF ANALYZER CAL	IBRATION	7	[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	Withi	n range	Pot settings
span 904	904	875	to 935	208
mid 413	412	379	to 437	none
zero D		-45	to +45	482
Dilution ratio (DR _{Span}):	0.264			[Span _{Diluted} / Span]
Dilution ratio difference:	34	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	5:27			
Comments:				
5				

BACKGROUN	ND INFORMA	TION			
Dry-bulb temp	06-210 F	Event (kiln charge): Hampton 3			
Wet-bulb temp	oerature:	80c	Run (sample):		
Absolute hum	idity:	5	Operator: M	ilota	
Percent moist			Date: 3		04
Target Dilution			Time now :	7:4	5
AMBIENT DA	TA				
Altimeter setti	ng: <u>299</u>	6 inHg	Laboratory tem	nperat	ture:°C
ANALYZER C	ALIBRATION	V		[1.2	= off; 3=on; 4=vent]
An	alyzer, ppm	Computer	Within range	-	Pot settings
zero	(0)	ſ	does not app	oly	482
span	05 (1527)	906	does not app	oly	208
mid	H5	416	379 to 437		none
SET DILUTIO	N FLOW BE	ORE RUN			
Total flow rate	(TFR):	2,620	L/min	ſ 1.	2, 3 = off; 4=meter]
Target		150		, .,	_,
dilution	flow rate (TD		_ L/min		[TFR x (1 - DR)]
sample	flow rate (TS	FR) <u>0,838</u>	_ L/min	L/min [TFR x DR	
Set and read o	dilution meter	3,8	_ scfh	scfh [scfh = L/min * 2.12	
Sample flow rate (SFR): 7423		_ L/min [1 =	= on;	2, 3 = off; 4=meter]	
CHECK DILUTION FLOW BEFORE RUN			[1,3	3=on: 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	100*(1	Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}	258	0,285	0,283		

START TIME: 9:58pm
ANALYZER RANGE: 2

[1, 2, 5 = on; 3, 4 = off; tank valves off]

	Milota			Event (kiln d	charge): <u>Hampton 3</u>	
Time now:	9:46 P			Run (sample):		
AMBIENT			-		ature: 22 °C	
END TIME	9:48					
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]	
		Analyzer	•		Computer	
s	pan _{Diluted}	338			342	
Sample flow	w rate (SFR) :	0,980	L/min	[1= or	n, 2, 3 = off, 4=meter]	
Read dilution	on meter: 39	scfh	L/min		[L/min = scfh*0.472]	
Total flow r (attach prin	ate (TFR): t out with all four	2,614 sets of data)	L/min	[1	, 2, 3 = off; 4=meter]	
Dilution rat	io (DR _{Flow}):	0,375			[SFR/TFR]	
CHECK OF	ANALYZER CA	LIBRATION	1	[.1,	2=off; 3=on, 4=vent]	
	Analyzer	Computer	Withi	n range	Pot settings	
span	912	912	875	to 935	212	
mid	416	415	379	to 437	none	
zero	0		-45	to +45	482	
Dilution rati	o (DR _{Span}):	0.371			[Span _{Diluted} / Span]	
Dilution rati	o difference:		% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]	
End time fo	r check:	9:55 6				
Comments:						

BACKGROU	JND INFORMA	TION			
Dry-bulb tem	nperature:	シー	Event (kiln cha	rge):	Hampton 3
	mperature:		Run (sample):		
Absolute hur	midity:		Operator: Mi		
Percent mois	sture:		Date:3-		
Target Dilution	on Ratio (TDR)	1: 0,4	Time now :	511	15p
AMBIENT D	ATA		***		
Altimeter set	ting: 29	$\frac{93}{}$ inHg	Laboratory tem	pera	ture: 26 °C
ANALYZER	CALIBRATION	N	ſ	1 2	= off; 3=on; 4=vent]
	nalyzer, ppm	Computer	Within range		Pot settings
zero	(0)	(does not app	ly	482
span	9/5 (1527)	906	does not app	ly	219
mid	415	45	379 to 437		none
SET DILUTION	ON FLOW BE	FORE RUN			
Total flow rat		2.617	_L/min	[1,	2, 3 = off; 4=meter]
Target dilutio	n flow rate (TD	FR) 15702	L/min		[TFR x (1 - DR)]
sample flow rate (TSFR)			_L/min		[TFR x DR]
Set and read dilution meter: 3,3			_ scfh	[scfh = L/min * 2.12]
Sample flow rate (SFR): 1,016			_ L/min	= on; 2, 3 = off; 4=meter]	
CHECK DILUTION FLOW BEFORE RUN			[1.3	3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*(Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Diluted}	348	0,385	0,388		0,8
					The second secon

START TIME: 525

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE:

Operator: Mileta		E	Event (kiln d	charge): <u>Hampton 🖇 🔾</u>
Time now:		Run (sample):		
AMBIENT DATA				
Airport pressure: 29,	_ inHg	Laborat	ory tempera	ature:°C
END TIME: 2 7AM	4			
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Diluted}	557	·		
Sample flow rate (SFR) :				
Read dilution meter:	scfh	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	A			[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]
Analyzer	Computer	Withi	n range	Pot settings
span 920		875	to 935	
mid 423		379	to 437	none
zero		-45	to +45	
Dilution ratio (DR _{Span}):	-		2	[Span _{Diluted} / Span]
Dilution ratio difference:		% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:				
Comments:				

BACKGRO	UND INFORMA	TION			
	mperature:		Event (kiln cha	rge):	Hampton 1)
Wet-bulb te	emperature:		Run (sample):	1	5
Absolute hu	ımidity:		Operator: Mi	lota	
Percent mo	isture:	****	Date: 3-6	26-	04
Target Dilut	tion Ratio (TDR)	1: 0.6	Time now :l	0:1	6
AMBIENT (
	etting: 29.0	10 inHg	Laboratory tem	pera	ture:°C
ANALYZER CALIBRATION			[1, 2 = off; 3=on; 4=vent]		
	Analyzer, ppm	Computer	Within range		Pot settings
zero	(0)	0	does not app	ly	480
span	905 (1527)	906	does not app	ly	212
mid	414	415	379 to 437		none
SET DILUT	ION FLOW BEI				
Total flow ra	ate (TFR):	2.565	_ L/min	[1	, 2, 3 = off; 4=meter]
Target diluti	on flow rate (TD	0FR)	_ L/min		[TFR x (1 - DR)]
sample flow rate (TSFR)			L/min	[TFR x DR]	
Set and read dilution meter:			_ scfh	[scfh = L/min * 2.12]
Sample flow rate (SFR): 1,570			_ L/min [1 =	on;	2, 3 = off; 4=meter]
CHECK DILUTION FLOW BEFORE RUN				[1,	3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Dilute}	sd 535	0.613	0.612		0,16
	10/10	_			

START TIME: 10:15

[1, 2, 5 = on; 3, 4 = off; tank valves off]

ANALYZER RANGE:

Appendix 4. Calibration Data

Assay Laboratory BOC GASES 600 Union Landing Road Riverton, NJ 08077 (856) 829 7878

CERTIFICATE OF ANALYSIS EPA Protocol Gas

CUSTOMER

INDUSTRIAL WELDING SUPPLY

3415 S PACIFIC BLVD

ALBANY, OR 973210000

CUSTOMER PO NO: 40734

Previous Certification Date(s):

CYLINDER NO

: CC62620

EXPIRATION DATE

: 11-Jan-2007

CERTIFICATION DATE

: 12-Jan-2004

CYLINDER PRESSURE : 2000 psig

PRODUCT ID NO

: 24011968

LOT NUMBER

592976

ANALYTICAL INFORMATION

This calibration standard has been certified per the 1997 EPA Traceability Protocol, Document EPA-600/97/121, Using Procedure G1. All Values certified to be +/-1% NIST Traceable.

Do Not Use This Cylinder below 150 psig. i.e. 1.0 Megapascal

Analytical Results

Requested Mixture

Certified Concentration Analytical Uncertainty

Assay Dates

PROPANE

Components

900.00 ppm

905 ppm

+/-1.00% NIST Traceable

01/12/04

Expiration

06/01/07

BALANCE GAS

CALIBRATION STANDARDS USED IN ASSAY

Type LOT ID Cylinder No Concentration NTRM 81669 99060605 XC003606B 453.00 +/- 4.00 ppm C3H8/AIR

ANALYTICAL INSTRUMENTS USED IN ASSAY

Last Multipoint Instrument/Make/Model Calibration **Analytical Principle** H-P 5890 3022A29265 Gas Chromatography 01/12/04

A division of The BOC Group, Inc. Page: 1 Of 1 A Delaware Corporation

QA Approved

BOC GASES 1075 CINCLARE DRIVE PORT ALLEN, LA 70767

Phone: (225) 388 0900

CERTIFICATE OF ANALYSIS

To:

INDUSTRIAL WELDING SUPPLY 3415 PACIFIC BLVD SW

ALBANY, OR 973217725

Material Submitted

: C3H8 400M (AIR) CERT 152

Specification No.

: 24017070

Cylinder Number

: CC5263

Cyl.Size/Valve

: 152/590 BR 3360

Customer P.O. : 40734

Order Number

: 0102500677

Date Reported

: 13-JAN-2004

Fill Date

: 13-JAN-2004

Expired Date Lot Number

: 12-JAN-2007

: 593083

Pressure

: 2000 psig

Component Specifications Min Max PROPANE Concentration 400 ppm 360 AIR 440 412 ppm BALANCE

A division of The BOC Group, Inc.

Page: 1 Of 1 A Delaware Corporation

Heavers **QA Approved**

PORT ALLEN, LOUISIANA BOC GASES

Cylinder # : CC6263
CU # : 0102600577
Pressure : 2000 psia
CGA Outlet : 152590 BR 3860
Fill : 13-JAN 2004
Expired : 12-JAN 2007
Material : C3+B 400M JAIR) CERT 152

CALINDER CONTENT ANALYSIS

Component

propane

Concentration 412 50m BALANCE

BOC GASES VANCOUVER, WASHINGTON

GS-1504 Order Number Approx. Pressure : 2200 psig CGA Cutlet : CGA346 Fill Date : 29-APR-2003 Expiration Date : 28-APR-2006 Lot Number : 25902

Air, Zero 0.1

CYLINDER CONTENT ANALYSIS
Component Concentration
20.6 %
Oxygen Balance

Moisture Total Hydrocarbon

< 3.0 ppm < 0.1 ppm

	ibration
8/10/	2002
Omega	PC
Calibrator	Readout
C	С
30.0	30.0
50.0	50.1
70.0	70.1
90.0	90.1
110.0	110.0

Flow Calibration Record Sheet (200 SLM)

ERA#: 128989W

Customer: OREGON STATE UNIVERSITY

MKS Transfer Standard Type: 1559A-200L-SV

MKS Primary Standard Type: A-200-1

Serial Number: WS 136

Serial Number: 14952-1-1

Standard	UUT	UUT	Percent of
Flow Rate	Flow Rate	Error	full scale
(SLM)	(SLM)	(SLM)	Error
0.00	0.000	0.000	0.000%
50.000	50.880	0.880	0.440%
100.000	99.880	-0.120	-0.060%
150.000	150.040	0.040	0.020%
200.000	. 200.000	0.000	0.000%

UUT Model: 1559A-200L-SV

UUT Serial #: 000317785

UUT Process Gas:

N₂

UUT Range:

200 SLM

Process Gas used:

N₂

Calibrated by: DP

Date of Calibration: 05/10/00

Verified by:

Notes:

- 1. All units must be operated on regulated heat (Power on) for a minimum of of one hour before any adjustment is made.
- 2. Flowmeters and/or Controllers are Calibrated at atmospheric pressure.
- 3. This Calibration is referenced to 0 Degrees Centigrade and 760 Torr.

3350 Scott Blvd., Bldg. #4, Santa Clara, CA 95054
This MKS Certificate or report shall not be reproduced except in full, without the written approval of the Laboratory (MKS).